論文の概要: Security Aspects of Quantum Machine Learning: Opportunities, Threats and
Defenses
- arxiv url: http://arxiv.org/abs/2204.03625v1
- Date: Thu, 7 Apr 2022 17:44:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-08 16:46:19.342323
- Title: Security Aspects of Quantum Machine Learning: Opportunities, Threats and
Defenses
- Title(参考訳): 量子機械学習のセキュリティ面:機会、脅威、防御
- Authors: Satwik Kundu and Swaroop Ghosh
- Abstract要約: 量子機械学習(QML)は、高次元ヒルベルト空間を利用して、限られたデータからよりリッチな表現を学習することができる。
ハードウェアセキュリティ領域におけるQMLの今後の可能性について検討する。
我々は、QMLおよび新興攻撃モデルのセキュリティ脆弱性を暴露し、対応する対策を講じる。
- 参考スコア(独自算出の注目度): 5.444459446244819
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In the last few years, quantum computing has experienced a growth spurt. One
exciting avenue of quantum computing is quantum machine learning (QML) which
can exploit the high dimensional Hilbert space to learn richer representations
from limited data and thus can efficiently solve complex learning tasks.
Despite the increased interest in QML, there have not been many studies that
discuss the security aspects of QML. In this work, we explored the possible
future applications of QML in the hardware security domain. We also expose the
security vulnerabilities of QML and emerging attack models, and corresponding
countermeasures.
- Abstract(参考訳): ここ数年、量子コンピューティングは成長の加速を経験してきた。
量子コンピューティングのエキサイティングな道の1つは、高次元ヒルベルト空間を利用して限られたデータからよりリッチな表現を学習し、複雑な学習タスクを効率的に解く量子機械学習(qml)である。
QMLへの関心が高まっているにもかかわらず、QMLのセキュリティ面について論じる研究は少ない。
本研究では,ハードウェアセキュリティ分野におけるQMLの今後の応用の可能性について検討した。
また、QMLおよび新興攻撃モデルのセキュリティ脆弱性、およびそれに対応する対策を明らかにする。
関連論文リスト
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
量子機械学習(QML)は、量子コンピューティングの原理と従来の機械学習を組み合わせた急速に成長する分野である。
本稿では,変分量子回路を用いてQMLアーキテクチャを開発する機械学習パラダイムの量子コンピューティングについて述べる。
論文 参考訳(メタデータ) (2024-11-14T12:27:50Z) - QML-IDS: Quantum Machine Learning Intrusion Detection System [1.2016264781280588]
本稿では量子コンピューティングと古典コンピューティングを組み合わせた新しい侵入検知システムQML-IDSを提案する。
QML-IDSはQuantum Machine Learning(QML)手法を用いてネットワークパターンを分析し、攻撃活動を検出する。
我々は,QML-IDSが攻撃検出に有効であることを示し,バイナリおよびマルチクラス分類タスクで良好に動作することを示す。
論文 参考訳(メタデータ) (2024-10-07T13:07:41Z) - Security Concerns in Quantum Machine Learning as a Service [2.348041867134616]
量子機械学習(Quantum Machine Learning、QML)は、変分量子回路(VQC)を用いて機械学習タスクに取り組むアルゴリズムのカテゴリである。
近年の研究では、限られたトレーニングデータサンプルからQMLモデルを効果的に一般化できることが示されている。
QMLは、古典的および量子コンピューティングリソースの両方を利用するハイブリッドモデルである。
論文 参考訳(メタデータ) (2024-08-18T18:21:24Z) - Predominant Aspects on Security for Quantum Machine Learning: Literature Review [0.0]
量子機械学習(Quantum Machine Learning, QML)は、量子コンピューティングと古典的な機械学習の有望な交わりとして登場した。
本稿では,セキュリティ上の懸念と強みがQMLとどのように結びついているのかを,系統的な文献レビューを用いて論じる。
論文 参考訳(メタデータ) (2024-01-15T15:35:43Z) - Foundations of Quantum Federated Learning Over Classical and Quantum
Networks [59.121263013213756]
量子フェデレーション学習(QFL)は、古典的フェデレーション学習(FL)の利点と量子技術の計算能力を統合する新しいフレームワークである。
QFLは古典的通信網と量子的通信網の両方に展開できる。
論文 参考訳(メタデータ) (2023-10-23T02:56:00Z) - Case Study-Based Approach of Quantum Machine Learning in Cybersecurity:
Quantum Support Vector Machine for Malware Classification and Protection [8.34729912896717]
各種サイバーセキュリティトピックをカバーするQMLベースの学習モジュールを設計・開発する。
本稿では,マルウェアの分類と保護に量子支援ベクトルマシン(QSVM)を用いる。
我々はQSVMモデルを実証し、マルウェアの分類と保護において95%の精度を達成する。
論文 参考訳(メタデータ) (2023-06-01T02:04:09Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Challenges and Opportunities in Quantum Machine Learning [2.5671549335906367]
量子機械学習(QML)は、特に量子データに対して、データ分析を加速する可能性がある。
ここでは、QMLの現在の方法と応用について概観する。
量子ニューラルネットワークと量子ディープラーニングに焦点をあてて、量子と古典的な機械学習の違いを強調します。
論文 参考訳(メタデータ) (2023-03-16T17:10:39Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。