論文の概要: Evaluating the Potential of Quantum Machine Learning in Cybersecurity: A Case-Study on PCA-based Intrusion Detection Systems
- arxiv url: http://arxiv.org/abs/2502.11173v1
- Date: Sun, 16 Feb 2025 15:49:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:15:48.254381
- Title: Evaluating the Potential of Quantum Machine Learning in Cybersecurity: A Case-Study on PCA-based Intrusion Detection Systems
- Title(参考訳): サイバーセキュリティにおける量子機械学習の可能性評価:PCAによる侵入検知システムの事例研究
- Authors: Armando Bellante, Tommaso Fioravanti, Michele Carminati, Stefano Zanero, Alessandro Luongo,
- Abstract要約: 従来の機械学習のサイバーセキュリティアプリケーションに対する量子コンピューティングと機械学習(QML)の影響について検討する。
まず、サイバーセキュリティに特有な機械学習問題における量子コンピューティングの潜在的な利点について検討する。
次に,実世界の問題に対するフォールトトレラントQMLアルゴリズムの今後の影響を定量化する手法について述べる。
- 参考スコア(独自算出の注目度): 42.184783937646806
- License:
- Abstract: Quantum computing promises to revolutionize our understanding of the limits of computation, and its implications in cryptography have long been evident. Today, cryptographers are actively devising post-quantum solutions to counter the threats posed by quantum-enabled adversaries. Meanwhile, quantum scientists are innovating quantum protocols to empower defenders. However, the broader impact of quantum computing and quantum machine learning (QML) on other cybersecurity domains still needs to be explored. In this work, we investigate the potential impact of QML on cybersecurity applications of traditional ML. First, we explore the potential advantages of quantum computing in machine learning problems specifically related to cybersecurity. Then, we describe a methodology to quantify the future impact of fault-tolerant QML algorithms on real-world problems. As a case study, we apply our approach to standard methods and datasets in network intrusion detection, one of the most studied applications of machine learning in cybersecurity. Our results provide insight into the conditions for obtaining a quantum advantage and the need for future quantum hardware and software advancements.
- Abstract(参考訳): 量子コンピューティングは、計算の限界に対する私たちの理解に革命をもたらすと約束している。
今日、暗号学者は量子可能敵による脅威に対抗するために量子後ソリューションを積極的に開発している。
一方、量子科学者はディフェンダーに力を与えるために量子プロトコルを革新している。
しかし、他のサイバーセキュリティドメインに対する量子コンピューティングと量子機械学習(QML)の広範な影響について検討する必要がある。
本研究では,従来のQMLのサイバーセキュリティ応用に対するQMLの潜在的影響について検討する。
まず、サイバーセキュリティに特有な機械学習問題における量子コンピューティングの潜在的な利点について検討する。
次に,実世界の問題に対するフォールトトレラントQMLアルゴリズムの今後の影響を定量化する手法について述べる。
ケーススタディでは、サイバーセキュリティにおける機械学習の最も研究されている応用の1つであるネットワーク侵入検出における標準手法とデータセットに、我々のアプローチを適用した。
この結果から,量子アドバンテージを実現するための条件と,将来的な量子ハードウェアとソフトウェアの発展の必要性について考察した。
関連論文リスト
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
量子機械学習(QML)は、量子コンピューティングの原理と従来の機械学習を組み合わせた急速に成長する分野である。
本稿では,変分量子回路を用いてQMLアーキテクチャを開発する機械学習パラダイムの量子コンピューティングについて述べる。
論文 参考訳(メタデータ) (2024-11-14T12:27:50Z) - QML-IDS: Quantum Machine Learning Intrusion Detection System [1.2016264781280588]
本稿では量子コンピューティングと古典コンピューティングを組み合わせた新しい侵入検知システムQML-IDSを提案する。
QML-IDSはQuantum Machine Learning(QML)手法を用いてネットワークパターンを分析し、攻撃活動を検出する。
我々は,QML-IDSが攻撃検出に有効であることを示し,バイナリおよびマルチクラス分類タスクで良好に動作することを示す。
論文 参考訳(メタデータ) (2024-10-07T13:07:41Z) - Assessing the Benefits and Risks of Quantum Computers [0.7224497621488283]
量子コンピュータの潜在的な用途とリスクについて、現在知られていることをレビューする。
新しい近似手法とビジネス関連量子応用の商業的探索という2つの大規模トレンドを特定した。
我々は、量子コンピュータが経済的に重要でない計算を実行できると信じていると結論付けている。
論文 参考訳(メタデータ) (2024-01-29T17:21:31Z) - Predominant Aspects on Security for Quantum Machine Learning: Literature Review [0.0]
量子機械学習(Quantum Machine Learning, QML)は、量子コンピューティングと古典的な機械学習の有望な交わりとして登場した。
本稿では,セキュリティ上の懸念と強みがQMLとどのように結びついているのかを,系統的な文献レビューを用いて論じる。
論文 参考訳(メタデータ) (2024-01-15T15:35:43Z) - Quantum Machine Learning for Remote Sensing: Exploring potential and
challenges [34.74698923766526]
リモートセンシング分野における量子機械学習(QML)の適用について検討する。
QMLは、宇宙からのデータ分析に有用な洞察を与えることができると信じられている。
本稿では,量子コンピュータのランタイムに悪影響を及ぼす現象であるカーネル値集中の問題に焦点をあてる。
論文 参考訳(メタデータ) (2023-11-13T08:38:44Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Security Aspects of Quantum Machine Learning: Opportunities, Threats and
Defenses [5.444459446244819]
量子機械学習(QML)は、高次元ヒルベルト空間を利用して、限られたデータからよりリッチな表現を学習することができる。
ハードウェアセキュリティ領域におけるQMLの今後の可能性について検討する。
我々は、QMLおよび新興攻撃モデルのセキュリティ脆弱性を暴露し、対応する対策を講じる。
論文 参考訳(メタデータ) (2022-04-07T17:44:22Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
小型地震インバージョン問題を解決するために,D波量子アニールに量子アルゴリズムを適用した。
量子コンピュータによって達成される精度は、少なくとも古典的コンピュータと同程度である。
論文 参考訳(メタデータ) (2020-05-06T14:18:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。