Mixing Signals: Data Augmentation Approach for Deep Learning Based Modulation Recognition
- URL: http://arxiv.org/abs/2204.03737v2
- Date: Tue, 29 Oct 2024 07:27:20 GMT
- Title: Mixing Signals: Data Augmentation Approach for Deep Learning Based Modulation Recognition
- Authors: Xinjie Xu, Zhuangzhi Chen, Dongwei Xu, Huaji Zhou, Shanqing Yu, Shilian Zheng, Qi Xuan, Xiaoniu Yang,
- Abstract summary: We propose a data augmentation strategy based on mixing signals for AMR of radio signals.
Experiments show that our proposed method can improve the classification accuracy of deep learning based AMR models.
- Score: 5.816418334578875
- License:
- Abstract: With the rapid development of deep learning, automatic modulation recognition (AMR), as an important task in cognitive radio, has gradually transformed from traditional feature extraction and classification to automatic classification by deep learning technology. However, deep learning models are data-driven methods, which often require a large amount of data as the training support. Data augmentation, as the strategy of expanding dataset, can improve the generalization of the deep learning models and thus improve the accuracy of the models to a certain extent. In this paper, for AMR of radio signals, we propose a data augmentation strategy based on mixing signals and consider four specific methods (Random Mixing, Maximum-Similarity-Mixing, $\theta-$Similarity Mixing and n-times Random Mixing) to achieve data augmentation. Experiments show that our proposed method can improve the classification accuracy of deep learning based AMR models in the full public dataset RML2016.10a. In particular, for the case of a single signal-to-noise ratio signal set, the classification accuracy can be significantly improved, which verifies the effectiveness of the methods.
Related papers
- Augmenting Radio Signals with Wavelet Transform for Deep Learning-Based
Modulation Recognition [6.793444383222236]
Deep learning for radio modulation recognition has become prevalent in recent years.
In real-world scenarios, it may not be feasible to gather sufficient training data in advance.
Data augmentation is a method used to increase the diversity and quantity of training dataset.
arXiv Detail & Related papers (2023-11-07T06:55:39Z) - Enhancing Cross-Dataset Performance of Distracted Driving Detection With
Score-Softmax Classifier [7.302402275736439]
Deep neural networks enable real-time monitoring of in-vehicle driver, facilitating the timely prediction of distractions, fatigue, and potential hazards.
Recent research has exposed unreliable cross-dataset end-to-end driver behavior recognition due to overfitting.
We introduce the Score-Softmax classifier, which addresses this issue by enhancing inter-class independence and Intra-class uncertainty.
arXiv Detail & Related papers (2023-10-08T15:28:01Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - Low-Resource Music Genre Classification with Cross-Modal Neural Model
Reprogramming [129.4950757742912]
We introduce a novel method for leveraging pre-trained models for low-resource (music) classification based on the concept of Neural Model Reprogramming (NMR)
NMR aims at re-purposing a pre-trained model from a source domain to a target domain by modifying the input of a frozen pre-trained model.
Experimental results suggest that a neural model pre-trained on large-scale datasets can successfully perform music genre classification by using this reprogramming method.
arXiv Detail & Related papers (2022-11-02T17:38:33Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Conditional Generative Data Augmentation for Clinical Audio Datasets [36.45569352490318]
We propose a novel data augmentation method for clinical audio datasets based on a conditional Wasserstein Generative Adversarial Network with Gradient Penalty.
To validate our method, we created a clinical audio dataset which was recorded in a real-world operating room during Total Hipplasty (THA) procedures.
We show that training with the generated augmented samples outperforms classical audio augmentation methods in terms of classification accuracy.
arXiv Detail & Related papers (2022-03-22T09:47:31Z) - Adaptive Hierarchical Similarity Metric Learning with Noisy Labels [138.41576366096137]
We propose an Adaptive Hierarchical Similarity Metric Learning method.
It considers two noise-insensitive information, textiti.e., class-wise divergence and sample-wise consistency.
Our method achieves state-of-the-art performance compared with current deep metric learning approaches.
arXiv Detail & Related papers (2021-10-29T02:12:18Z) - Ensemble Wrapper Subsampling for Deep Modulation Classification [70.91089216571035]
Subsampling of received wireless signals is important for relaxing hardware requirements as well as the computational cost of signal processing algorithms.
We propose a subsampling technique to facilitate the use of deep learning for automatic modulation classification in wireless communication systems.
arXiv Detail & Related papers (2020-05-10T06:11:13Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
We develop a novel automatic learning-based data augmentation method for medical image segmentation.
In our method, we innovatively combine the data augmentation module and the subsequent segmentation module in an end-to-end training manner with a consistent loss.
We extensively evaluated our method on CT kidney tumor segmentation which validated the promising results of our method.
arXiv Detail & Related papers (2020-02-22T14:10:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.