Correspondence of topological classification between quantum graph extra
dimension and topological matter
- URL: http://arxiv.org/abs/2204.03834v2
- Date: Wed, 21 Sep 2022 08:39:16 GMT
- Title: Correspondence of topological classification between quantum graph extra
dimension and topological matter
- Authors: Tomonori Inoue, Makoto Sakamoto, Masatoshi Sato, and Inori Ueba
- Abstract summary: We study five-dimensional Dirac fermions of which extra-dimension is compactified on quantum graphs.
We provide a complete topological classification of the boundary conditions in terms of non-interacting fermionic topological phases.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we study five-dimensional Dirac fermions of which
extra-dimension is compactified on quantum graphs. We find that there is a
non-trivial correspondence between matrices specifying boundary conditions at
the vertex of the quantum graphs and zero-dimensional Hamiltonians in gapped
free-fermion systems. Based on the correspondence, we provide a complete
topological classification of the boundary conditions in terms of
non-interacting fermionic topological phases. The ten symmetry classes of
topological phases are fully identified in the language of five-dimensional
Dirac fermions, and topological numbers of the boundary conditions are given.
In analogy with the bulk-boundary correspondence in non-interacting fermionic
topological phases, the boundary condition topological numbers predict
four-dimensional massless fermions localized at the vertex of the quantum
graphs and thus govern the low energy physics in four dimensions.
Related papers
- Topological QBits in Flux-Quantized Super-Gravity [0.0]
We give a brief exposition of our recent realization of anyonic quantum states on single M5-brane probes in 11D super-gravity backgrounds.
We end with some more meta-physical remarks on (cohesive) homotopy (type) theory in view of emergent fundamental physics and, possibly, M-theory.
arXiv Detail & Related papers (2024-11-01T14:37:12Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Topological squashed entanglement: nonlocal order parameter for
one-dimensional topological superconductors [0.0]
We show the end-to-end, long-distance, bipartite squashed entanglement between the edges of a many-body system.
For the Kitaev chain in the entire topological phase, the edge squashed entanglement is quantized to log(2)/2, half the maximal Bell-state entanglement, and vanishes in the trivial phase.
Such topological squashed entanglement exhibits the correct scaling at the quantum phase transition, is stable in the presence of interactions, and is robust against disorder and local perturbations.
arXiv Detail & Related papers (2022-01-28T10:57:51Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Extrinsic topology of Floquet anomalous boundary states in quantum walks [0.0]
We find that Floquet anomalous boundary states in quantum walks have similar extrinsic topological natures.
In contrast to higher order topological insulators, the extrinsic topology in quantum walks is manifest even for first-order topological phases.
arXiv Detail & Related papers (2021-12-06T16:56:28Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Relating the topology of Dirac Hamiltonians to quantum geometry: When
the quantum metric dictates Chern numbers and winding numbers [0.0]
We establish relations between the quantum metric and the topological invariants of generic Dirac Hamiltonians.
We show that topological indices are bounded by the quantum volume determined by the quantum metric.
This work suggests unexplored topological responses and metrological applications in a broad class of quantum-engineered systems.
arXiv Detail & Related papers (2021-06-01T21:10:48Z) - Topologically inequivalent quantizations [0.0]
We find that the usual thermodynamic limit is not necessary in order to have the inequivalent representations needed for the existence of physically disjoint phases of the system.
This is a new type of inequivalence, due to the nontrivial topological structure of the phase space, that appears at finite volume.
arXiv Detail & Related papers (2020-12-17T20:50:11Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.