Topological QBits in Flux-Quantized Super-Gravity
- URL: http://arxiv.org/abs/2411.00628v1
- Date: Fri, 01 Nov 2024 14:37:12 GMT
- Title: Topological QBits in Flux-Quantized Super-Gravity
- Authors: Hisham Sati, Urs Schreiber,
- Abstract summary: We give a brief exposition of our recent realization of anyonic quantum states on single M5-brane probes in 11D super-gravity backgrounds.
We end with some more meta-physical remarks on (cohesive) homotopy (type) theory in view of emergent fundamental physics and, possibly, M-theory.
- Score: 0.0
- License:
- Abstract: We first give a brief exposition of our recent realization of anyonic quantum states on single M5-brane probes in 11D super-gravity backgrounds, by non-perturbative quantization of the topological sector of the self-dual tensor field on the 6D worldvolume, after its proper flux-quantization. This opens the prospect of holographic models for topological qbits away from the usual but unrealistic limit of large numbers of branes. At the same time, the elementary homotopy-theoretic nature of the construction yields a slick expression of topological quantum gates in homotopically-typed programming languages, opening the prospect of topological-hardware aware quantum programming. In view of these results, we end with some more meta-physical remarks on (cohesive) homotopy (type) theory in view of emergent fundamental physics and, possibly, M-theory.
Related papers
- Topological Quantum Gates in Homotopy Type Theory [0.0]
We explain how the specification of realistic topological quantum gates has a surprisingly slick formulation in parameterized point-set topology.
We propose that this confluence of concepts may jointly kickstart the development of topological quantum programming proper.
In a companion article, we will explain how further passage to "dependent linear" homotopy data types naturally extends this scheme to a full-blown quantum programming/certification language.
arXiv Detail & Related papers (2023-03-04T11:25:49Z) - Qubit Geodesics on the Bloch Sphere from Optimal-Speed Hamiltonian
Evolutions [0.0]
We present an explicit geodesic analysis of the trajectories that emerge from the quantum evolution of a single-qubit quantum state.
In addition to viewing geodesics in ray space as paths of minimal length, we also verify the geodesicity of paths in terms of unit geometric efficiency and vanishing geometric phase.
arXiv Detail & Related papers (2022-10-17T14:44:03Z) - Topological Quantum Programming in TED-K [0.0]
We describe a fundamental and natural scheme that we are developing, for typed functional (hence verifiable) topological quantum programming.
It reflects the universal fine technical detail of topological q-bits, namely of symmetry-protected (or enhanced) topologically ordered Laughlin-type anyon ground states.
The language system is under development at the "Center for Quantum and Topological Systems" at the Research Institute of NYU, Abu Dhabi.
arXiv Detail & Related papers (2022-09-17T14:00:37Z) - Spreading of a local excitation in a Quantum Hierarchical Model [62.997667081978825]
We study the dynamics of the quantum Dyson hierarchical model in its paramagnetic phase.
An initial state made by a local excitation of the paramagnetic ground state is considered.
A localization mechanism is found and the excitation remains close to its initial position at arbitrary times.
arXiv Detail & Related papers (2022-07-14T10:05:20Z) - Correspondence of topological classification between quantum graph extra
dimension and topological matter [0.0]
We study five-dimensional Dirac fermions of which extra-dimension is compactified on quantum graphs.
We provide a complete topological classification of the boundary conditions in terms of non-interacting fermionic topological phases.
arXiv Detail & Related papers (2022-04-08T04:19:26Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.