論文の概要: Data-Driven Evaluation of Training Action Space for Reinforcement
Learning
- arxiv url: http://arxiv.org/abs/2204.03840v1
- Date: Fri, 8 Apr 2022 04:53:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-11 13:40:56.649059
- Title: Data-Driven Evaluation of Training Action Space for Reinforcement
Learning
- Title(参考訳): 強化学習のための訓練行動空間のデータ駆動評価
- Authors: Rajat Ghosh, Debojyoti Dutta
- Abstract要約: 本稿では,行動空間の分類とランク付けを訓練するためのShapleyに着想を得た方法論を提案する。
指数時間シェープ計算を減らすため、モンテカルロシミュレーションを含む。
提案したデータ駆動手法は、異なるドメイン、ユースケース、強化学習アルゴリズムへのRLである。
- 参考スコア(独自算出の注目度): 1.370633147306388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training action space selection for reinforcement learning (RL) is
conflict-prone due to complex state-action relationships. To address this
challenge, this paper proposes a Shapley-inspired methodology for training
action space categorization and ranking. To reduce exponential-time shapley
computations, the methodology includes a Monte Carlo simulation to avoid
unnecessary explorations. The effectiveness of the methodology is illustrated
using a cloud infrastructure resource tuning case study. It reduces the search
space by 80\% and categorizes the training action sets into dispensable and
indispensable groups. Additionally, it ranks different training actions to
facilitate high-performance yet cost-efficient RL model design. The proposed
data-driven methodology is extensible to different domains, use cases, and
reinforcement learning algorithms.
- Abstract(参考訳): 強化学習のための訓練行動空間選択 (rl) は、複雑な状態-行動関係のために相反し易い。
そこで本研究では,行動空間の分類とランク付けをトレーニングするためのShapleyに着想を得た方法論を提案する。
指数時間シャプリー計算を減らすため、この手法は不要な探索を避けるためにモンテカルロシミュレーションを含む。
本手法の有効性を,クラウドインフラ資源チューニングケーススタディを用いて示す。
検索スペースを80\%削減し、トレーニングアクションセットを不要かつ必要不可欠なグループに分類する。
さらに、高性能でコスト効率のよいRLモデル設計を容易にするために、異なるトレーニングアクションをランク付けする。
提案したデータ駆動手法は、異なるドメイン、ユースケース、強化学習アルゴリズムに拡張可能である。
関連論文リスト
- PLANRL: A Motion Planning and Imitation Learning Framework to Bootstrap Reinforcement Learning [13.564676246832544]
PLANRLは、ロボットがいつ古典的な動き計画を使うべきか、いつポリシーを学ぶべきかを選択するためのフレームワークである。
PLANRLは2つの操作モードを切り替える: オブジェクトから離れたときに古典的なテクニックを使ってウェイポイントに到達し、オブジェクトと対話しようとするときに細かい操作制御を行う。
我々は,複数の課題のあるシミュレーション環境と実世界のタスクにまたがってアプローチを評価し,既存手法と比較して適応性,効率,一般化の点で優れた性能を示す。
論文 参考訳(メタデータ) (2024-08-07T19:30:08Z) - Decomposing Control Lyapunov Functions for Efficient Reinforcement Learning [10.117626902557927]
現在の強化学習(RL)手法では、特定のタスクを学習するために大量のデータを必要とするため、エージェントをデプロイして実世界のアプリケーションにデータを収集する場合、不合理なコストが発生する。
本稿では,RL の報酬関数を補うために,CLF (Control Lyapunov Function) を導入して,サンプルの複雑さを低減した既存の作業から構築する。
提案手法は,最先端のソフト・アクター・クリティカル・アルゴリズムが必要とする実世界のデータの半分以下でクワッドコプターを着陸させることが可能であることを示す。
論文 参考訳(メタデータ) (2024-03-18T19:51:17Z) - Back to Basics: A Simple Recipe for Improving Out-of-Domain Retrieval in
Dense Encoders [63.28408887247742]
得られたモデルにおいて,より優れた一般化能力を得るために,トレーニング手順の改善が可能であるかを検討する。
我々は、高密度エンコーダをトレーニングするための簡単なレシピを推奨する: LoRAのようなパラメータ効率のよいMSMARCOのトレーニング。
論文 参考訳(メタデータ) (2023-11-16T10:42:58Z) - A Neuromorphic Architecture for Reinforcement Learning from Real-Valued
Observations [0.34410212782758043]
強化学習(RL)は複雑な環境における意思決定のための強力なフレームワークを提供する。
本稿では,実測値を用いてRL問題を解くための新しいスパイキングニューラルネットワーク(SNN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-07-06T12:33:34Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
本稿では,オフラインデータから新しいタスクへ,潜在的に有用なダイナミックスや動作デモを伝達するモデルベースRL法を提案する。
主な考え方は、世界モデルを行動学習のシミュレーターとしてだけでなく、タスクの関連性を測定するツールとして使うことである。
本稿では,Meta-WorldとDeepMind Control Suiteの最先端手法と比較して,我々のアプローチの利点を実証する。
論文 参考訳(メタデータ) (2023-06-06T02:24:41Z) - Rethinking Population-assisted Off-policy Reinforcement Learning [7.837628433605179]
オフ政治強化学習アルゴリズムは、限られた探索のために局所最適への収束に苦慮する。
人口ベースのアルゴリズムは自然探索戦略を提供するが、ブラックボックス演算子は非効率である。
最近のアルゴリズムはこれら2つの手法を統合し、共有再生バッファを介してそれらを接続している。
論文 参考訳(メタデータ) (2023-05-04T15:53:00Z) - Reinforcement Learning with Partial Parametric Model Knowledge [3.3598755777055374]
我々は,環境の完全無知と完全知識のギャップを埋めるために,継続的制御のための強化学習手法を適用した。
本手法は,モデルフリーRLとモデルベース制御の両方からインスピレーションを得て,PLSPI(Partial Knowledge Least Squares Policy Iteration)を提案する。
論文 参考訳(メタデータ) (2023-04-26T01:04:35Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
微分可能シミュレータと新しいポリシー学習アルゴリズム(SHAC)を提案する。
本アルゴリズムは,スムーズな批判機能により局所最小化の問題を軽減する。
現状のRLと微分可能なシミュレーションベースアルゴリズムと比較して,サンプル効率と壁面時間を大幅に改善した。
論文 参考訳(メタデータ) (2022-04-14T17:46:26Z) - Jump-Start Reinforcement Learning [68.82380421479675]
本稿では、オフラインデータやデモ、あるいは既存のポリシーを使ってRLポリシーを初期化するメタアルゴリズムを提案する。
特に,タスク解決に2つのポリシーを利用するアルゴリズムであるJump-Start Reinforcement Learning (JSRL)を提案する。
実験により、JSRLは既存の模倣と強化学習アルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:25:22Z) - Learning to Reweight Imaginary Transitions for Model-Based Reinforcement
Learning [58.66067369294337]
モデルが不正確または偏りがある場合、虚構軌跡はアクション値とポリシー関数を訓練するために欠落する可能性がある。
虚構遷移を適応的に再重み付けし, 未生成軌跡の負の効果を低減させる。
提案手法は,複数のタスクにおいて,最先端のモデルベースおよびモデルフリーなRLアルゴリズムより優れる。
論文 参考訳(メタデータ) (2021-04-09T03:13:35Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
離散的な行動空間における強化学習(RL)は、実世界の応用では至るところで行われているが、その複雑さは行動空間次元とともに指数関数的に増大する。
我々は,行動値関数を推定し,相関行動に適用し,これらの評価値を組み合わせて勾配推定の分散を制御する。
これらの取り組みにより、分散制御技術に頼って、関連するRLアルゴリズムを実証的に上回る、新たな離散的なRLアルゴリズムが実現される。
論文 参考訳(メタデータ) (2020-02-10T04:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。