論文の概要: Decomposing Control Lyapunov Functions for Efficient Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2403.12210v1
- Date: Mon, 18 Mar 2024 19:51:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 18:12:11.329061
- Title: Decomposing Control Lyapunov Functions for Efficient Reinforcement Learning
- Title(参考訳): 効率的な強化学習のためのリアプノフ関数の解法
- Authors: Antonio Lopez, David Fridovich-Keil,
- Abstract要約: 現在の強化学習(RL)手法では、特定のタスクを学習するために大量のデータを必要とするため、エージェントをデプロイして実世界のアプリケーションにデータを収集する場合、不合理なコストが発生する。
本稿では,RL の報酬関数を補うために,CLF (Control Lyapunov Function) を導入して,サンプルの複雑さを低減した既存の作業から構築する。
提案手法は,最先端のソフト・アクター・クリティカル・アルゴリズムが必要とする実世界のデータの半分以下でクワッドコプターを着陸させることが可能であることを示す。
- 参考スコア(独自算出の注目度): 10.117626902557927
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent methods using Reinforcement Learning (RL) have proven to be successful for training intelligent agents in unknown environments. However, RL has not been applied widely in real-world robotics scenarios. This is because current state-of-the-art RL methods require large amounts of data to learn a specific task, leading to unreasonable costs when deploying the agent to collect data in real-world applications. In this paper, we build from existing work that reshapes the reward function in RL by introducing a Control Lyapunov Function (CLF), which is demonstrated to reduce the sample complexity. Still, this formulation requires knowing a CLF of the system, but due to the lack of a general method, it is often a challenge to identify a suitable CLF. Existing work can compute low-dimensional CLFs via a Hamilton-Jacobi reachability procedure. However, this class of methods becomes intractable on high-dimensional systems, a problem that we address by using a system decomposition technique to compute what we call Decomposed Control Lyapunov Functions (DCLFs). We use the computed DCLF for reward shaping, which we show improves RL performance. Through multiple examples, we demonstrate the effectiveness of this approach, where our method finds a policy to successfully land a quadcopter in less than half the amount of real-world data required by the state-of-the-art Soft-Actor Critic algorithm.
- Abstract(参考訳): 強化学習(RL)を用いた最近の手法は、未知の環境で知的エージェントの訓練に成功している。
しかし、RLは現実世界のロボティクスのシナリオでは広く適用されていない。
これは、現在の最先端のRLメソッドでは、特定のタスクを学習するために大量のデータを必要とするため、エージェントをデプロイして実際のアプリケーションにデータを収集する場合、不合理なコストが発生するためである。
本稿では,RLの報酬関数を再現する既存の作業から,サンプルの複雑性を低減するための制御リャプノフ関数(CLF)を導入する。
それでも、この定式化にはシステムのCLFを知る必要があるが、一般的な手法が欠如しているため、適切なCLFを特定することはしばしば困難である。
既存の作業はハミルトン・ヤコビ到達可能性手順を通じて低次元のCLFを計算することができる。
しかし、この手法は高次元システムでは難解となり、システム分解技術を用いて分解制御リアプノフ関数 (DCLF) と呼ばれるものを計算する。
計算されたDCLFを報酬形成に使用し、RL性能の向上を示す。
複数の例を通して、我々の手法は、最先端のソフトアクター批判アルゴリズムが必要とする実世界のデータの半分以下にクワッドコプターを着陸させる政策を立証する。
関連論文リスト
- Operator World Models for Reinforcement Learning [37.69110422996011]
政策ミラーDescentは強化学習(RL)に直接適用されない
本研究では,条件付き平均埋め込みを用いた環境のワールドモデル学習に基づく新しいアプローチを提案する。
次に、RLの演算的定式化を利用して、行列演算による閉形式でこの量で作用値関数を表現する。
論文 参考訳(メタデータ) (2024-06-28T12:05:47Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
筆者らは,報酬の計算と環境のリセットを行う手法とともに,効率的なオフ・ポリティクス・ディープ・RL法を含むライブラリを開発した。
我々は,PCBボードアセンブリ,ケーブルルーティング,オブジェクトの移動に関するポリシを,非常に効率的な学習を実現することができることを発見した。
これらの政策は完全な成功率またはほぼ完全な成功率、摂動下でさえ極端な堅牢性を実現し、突発的な堅牢性回復と修正行動を示す。
論文 参考訳(メタデータ) (2024-01-29T10:01:10Z) - Efficient Deep Reinforcement Learning Requires Regulating Overfitting [91.88004732618381]
本稿では,高時間差(TD)誤差が深部RLアルゴリズムの性能に悪影響を及ぼす主要な原因であることを示す。
検証TDエラーをターゲットとした簡単なオンラインモデル選択法は,状態ベースDMCおよびGymタスク間で有効であることを示す。
論文 参考訳(メタデータ) (2023-04-20T17:11:05Z) - A Transferable and Automatic Tuning of Deep Reinforcement Learning for
Cost Effective Phishing Detection [21.481974148873807]
現実の課題の多くは、複数の補完的な学習モデルのアンサンブルを配置する必要がある。
Deep Reinforcement Learning (DRL) はコスト効率のよい代替手段であり、検出器は前者の出力に基づいて動的に選択される。
論文 参考訳(メタデータ) (2022-09-19T14:09:07Z) - Jump-Start Reinforcement Learning [68.82380421479675]
本稿では、オフラインデータやデモ、あるいは既存のポリシーを使ってRLポリシーを初期化するメタアルゴリズムを提案する。
特に,タスク解決に2つのポリシーを利用するアルゴリズムであるJump-Start Reinforcement Learning (JSRL)を提案する。
実験により、JSRLは既存の模倣と強化学習アルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:25:22Z) - PC-MLP: Model-based Reinforcement Learning with Policy Cover Guided
Exploration [15.173628100049129]
本研究では,カーネル化レギュレータ(KNR)と線形マルコフ決定過程(MDP)のモデルベースアルゴリズムについて検討する。
両方のモデルに対して、我々のアルゴリズムはサンプルの複雑さを保証し、プランニングオラクルへのアクセスのみを使用する。
また,提案手法は報酬のない探索を効率的に行うことができる。
論文 参考訳(メタデータ) (2021-07-15T15:49:30Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - A Survey of Reinforcement Learning Algorithms for Dynamically Varying
Environments [1.713291434132985]
強化学習(Reinforcement Learning, RL)アルゴリズムは、在庫管理、レコメンデータシステム、車両交通管理、クラウドコンピューティング、ロボット工学などの分野で応用されている。
これらの領域で生じる多くのタスクの現実的な合併症は、古典的RLアルゴリズムの基礎となる基本的な仮定で解くのを難しくする。
本稿では、動的に変化する環境モデルを扱うために開発されたRL法について調査する。
これらのアルゴリズムの代表的コレクションは、それらの分類と相対的なメリットとデメリットと共に、この研究で詳細に議論されている。
論文 参考訳(メタデータ) (2020-05-19T09:42:42Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
線形時間論理(LTL)を用いて未知の連続状態/動作マルコフ決定過程(MDP)のゴールを定式化できるモデルフリーなRLアルゴリズムを提案する。
このアルゴリズムは、トレースが仕様を最大確率で満たす制御ポリシーを合成することが保証される。
論文 参考訳(メタデータ) (2019-02-02T20:09:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。