Efficient tracking of team sport players with few game-specific
annotations
- URL: http://arxiv.org/abs/2204.04049v1
- Date: Fri, 8 Apr 2022 13:11:30 GMT
- Title: Efficient tracking of team sport players with few game-specific
annotations
- Authors: Adrien Maglo, Astrid Orcesi, Quoc-Cuong Pham
- Abstract summary: We propose a new generic method to track team sport players during a full game thanks to few human annotations collected via a semi-interactive system.
Non-ambiguous tracklets and their appearance features are automatically generated with a detection and a reidentification network both pre-trained on public datasets.
We demonstrate the efficiency of our approach on a challenging rugby sevens dataset.
- Score: 1.052782170493037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the requirements for team sports analysis is to track and recognize
players. Many tracking and reidentification methods have been proposed in the
context of video surveillance. They show very convincing results when tested on
public datasets such as the MOT challenge. However, the performance of these
methods are not as satisfactory when applied to player tracking. Indeed, in
addition to moving very quickly and often being occluded, the players wear the
same jersey, which makes the task of reidentification very complex. Some recent
tracking methods have been developed more specifically for the team sport
context. Due to the lack of public data, these methods use private datasets
that make impossible a comparison with them. In this paper, we propose a new
generic method to track team sport players during a full game thanks to few
human annotations collected via a semi-interactive system. Non-ambiguous
tracklets and their appearance features are automatically generated with a
detection and a reidentification network both pre-trained on public datasets.
Then an incremental learning mechanism trains a Transformer to classify
identities using few game-specific human annotations. Finally, tracklets are
linked by an association algorithm. We demonstrate the efficiency of our
approach on a challenging rugby sevens dataset. To overcome the lack of public
sports tracking dataset, we publicly release this dataset at
https://kalisteo.cea.fr/index.php/free-resources/. We also show that our method
is able to track rugby sevens players during a full match, if they are
observable at a minimal resolution, with the annotation of only 6 few seconds
length tracklets per player.
Related papers
- TeamTrack: A Dataset for Multi-Sport Multi-Object Tracking in Full-pitch Videos [11.35998213546475]
Multi-object tracking (MOT) is a critical and challenging task in computer vision.
We introduce TeamTrack, a pioneering benchmark dataset specifically designed for MOT in sports.
TeamTrack is an extensive collection of full-pitch video data from various sports, including soccer, basketball, and handball.
arXiv Detail & Related papers (2024-04-22T04:33:40Z) - Towards Active Learning for Action Spotting in Association Football
Videos [59.84375958757395]
Analyzing football videos is challenging and requires identifying subtle and diverse-temporal patterns.
Current algorithms face significant challenges when learning from limited annotated data.
We propose an active learning framework that selects the most informative video samples to be annotated next.
arXiv Detail & Related papers (2023-04-09T11:50:41Z) - A Graph-Based Method for Soccer Action Spotting Using Unsupervised
Player Classification [75.93186954061943]
Action spotting involves understanding the dynamics of the game, the complexity of events, and the variation of video sequences.
In this work, we focus on the former by (a) identifying and representing the players, referees, and goalkeepers as nodes in a graph, and by (b) modeling their temporal interactions as sequences of graphs.
For the player identification task, our method obtains an overall performance of 57.83% average-mAP by combining it with other modalities.
arXiv Detail & Related papers (2022-11-22T15:23:53Z) - Observation Centric and Central Distance Recovery on Sports Player
Tracking [24.396926939889532]
We propose a motionbased tracking algorithm and three post-processing pipelines for three sports including basketball, football, and volleyball.
Our method achieves a HOTA of 73.968, ranking 3rd place on the 2022 Sportsmot workshop final leaderboard.
arXiv Detail & Related papers (2022-09-27T04:48:11Z) - A Survey on Video Action Recognition in Sports: Datasets, Methods and
Applications [60.3327085463545]
We present a survey on video action recognition for sports analytics.
We introduce more than ten types of sports, including team sports, such as football, basketball, volleyball, hockey and individual sports, such as figure skating, gymnastics, table tennis, diving and badminton.
We develop a toolbox using PaddlePaddle, which supports football, basketball, table tennis and figure skating action recognition.
arXiv Detail & Related papers (2022-06-02T13:19:36Z) - SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in
Soccer Videos [62.686484228479095]
We propose a novel dataset for multiple object tracking composed of 200 sequences of 30s each.
The dataset is fully annotated with bounding boxes and tracklet IDs.
Our analysis shows that multiple player, referee and ball tracking in soccer videos is far from being solved.
arXiv Detail & Related papers (2022-04-14T12:22:12Z) - Collusion Detection in Team-Based Multiplayer Games [57.153233321515984]
We propose a system that detects colluding behaviors in team-based multiplayer games.
The proposed method analyzes the players' social relationships paired with their in-game behavioral patterns.
We then automate the detection using Isolation Forest, an unsupervised learning technique specialized in highlighting outliers.
arXiv Detail & Related papers (2022-03-10T02:37:39Z) - DanceTrack: Multi-Object Tracking in Uniform Appearance and Diverse
Motion [56.1428110894411]
We propose a large-scale dataset for multi-human tracking, where humans have similar appearance, diverse motion and extreme articulation.
As the dataset contains mostly group dancing videos, we name it "DanceTrack"
We benchmark several state-of-the-art trackers on our dataset and observe a significant performance drop on DanceTrack when compared against existing benchmarks.
arXiv Detail & Related papers (2021-11-29T16:49:06Z) - Player Tracking and Identification in Ice Hockey [9.577770317771087]
This paper introduces an automated system to track and identify players in broadcast NHL hockey videos.
The system is composed of three components (1) Player tracking, (2) Team identification and (3) Player identification.
For team identification, the away-team jerseys are grouped into a single class and home-team jerseys are grouped in classes according to their jersey color.
A novel player identification model is introduced that utilizes a temporal one-dimensional convolutional network to identify players from player bounding box sequences.
arXiv Detail & Related papers (2021-10-06T22:37:08Z) - Self-Supervised Small Soccer Player Detection and Tracking [8.851964372308801]
State-of-the-art tracking algorithms achieve impressive results in scenarios on which they have been trained for, but they fail in challenging ones such as soccer games.
This is frequently due to the player small relative size and the similar appearance among players of the same team.
We propose a self-supervised pipeline which is able to detect and track low-resolution soccer players under different recording conditions without any need of ground-truth data.
arXiv Detail & Related papers (2020-11-20T10:57:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.