Seeded graph matching for the correlated Gaussian Wigner model via the projected power method
- URL: http://arxiv.org/abs/2204.04099v3
- Date: Sun, 5 May 2024 13:54:53 GMT
- Title: Seeded graph matching for the correlated Gaussian Wigner model via the projected power method
- Authors: Ernesto Araya, Guillaume Braun, Hemant Tyagi,
- Abstract summary: We analyse the performance of the emphprojected power method (PPM) as a emphseeded graph matching algorithm.
PPM works even in iterations of constant $sigma$, thus extending the analysis in (Mao et al. 2023) for the sparse Correlated Erdos-Renyi(CER) model to the (dense) CGW model.
- Score: 5.639451539396459
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the \emph{graph matching} problem we observe two graphs $G,H$ and the goal is to find an assignment (or matching) between their vertices such that some measure of edge agreement is maximized. We assume in this work that the observed pair $G,H$ has been drawn from the Correlated Gaussian Wigner (CGW) model -- a popular model for correlated weighted graphs -- where the entries of the adjacency matrices of $G$ and $H$ are independent Gaussians and each edge of $G$ is correlated with one edge of $H$ (determined by the unknown matching) with the edge correlation described by a parameter $\sigma\in [0,1)$. In this paper, we analyse the performance of the \emph{projected power method} (PPM) as a \emph{seeded} graph matching algorithm where we are given an initial partially correct matching (called the seed) as side information. We prove that if the seed is close enough to the ground-truth matching, then with high probability, PPM iteratively improves the seed and recovers the ground-truth matching (either partially or exactly) in $\mathcal{O}(\log n)$ iterations. Our results prove that PPM works even in regimes of constant $\sigma$, thus extending the analysis in (Mao et al. 2023) for the sparse Correlated Erdos-Renyi(CER) model to the (dense) CGW model. As a byproduct of our analysis, we see that the PPM framework generalizes some of the state-of-art algorithms for seeded graph matching. We support and complement our theoretical findings with numerical experiments on synthetic data.
Related papers
- The Umeyama algorithm for matching correlated Gaussian geometric models
in the low-dimensional regime [0.0]
Motivated by the problem of matching two correlated random geometric graphs, we study the problem of matching two Gaussian geometric models correlated through a latent node permutation.
We consider two types of (correlated) weighted complete graphs with edge weights given by $A_i,j=langle X_i,X_j rangle$, $B_i,j=langle Y_i,Y_j rangle$.
arXiv Detail & Related papers (2024-02-23T04:58:54Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Matching Correlated Inhomogeneous Random Graphs using the $k$-core
Estimator [5.685589351789462]
We study the so-called emph$k$-core estimator, which outputs a correspondence that induces a large, common subgraph of both graphs.
We specialize our general framework to derive new results on exact and partial recovery in correlated block models, correlated Chung-Lu geometric graphs, and correlated random graphs.
arXiv Detail & Related papers (2023-02-10T18:21:35Z) - Random graph matching at Otter's threshold via counting chandeliers [16.512416293014493]
We propose an efficient algorithm for graph matching based on similarity scores constructed from counting a certain family of weighted trees rooted at each.
This is the first graph matching algorithm that succeeds at an explicit constant correlation and applies to both sparse and dense graphs.
arXiv Detail & Related papers (2022-09-25T20:00:28Z) - Causal Bandits for Linear Structural Equation Models [58.2875460517691]
This paper studies the problem of designing an optimal sequence of interventions in a causal graphical model.
It is assumed that the graph's structure is known and has $N$ nodes.
Two algorithms are proposed for the frequentist (UCB-based) and Bayesian settings.
arXiv Detail & Related papers (2022-08-26T16:21:31Z) - Efficient Signed Graph Sampling via Balancing & Gershgorin Disc Perfect
Alignment [51.74913666829224]
We show that for datasets with strong inherent anti-correlations, a suitable graph contains both positive and negative edge weights.
We propose a linear-time signed graph sampling method centered on the concept of balanced signed graphs.
Experimental results show that our signed graph sampling method outperformed existing fast sampling schemes noticeably on various datasets.
arXiv Detail & Related papers (2022-08-18T09:19:01Z) - Random Graph Matching in Geometric Models: the Case of Complete Graphs [21.689343447798677]
This paper studies the problem of matching two complete graphs with edge weights correlated through latent geometries.
We derive an approximate maximum likelihood estimator, which provably achieves, with high probability, perfect recovery of $pi*$.
As a side discovery, we show that the celebrated spectral algorithm of [Ume88] emerges as a further approximation to the maximum likelihood in the geometric model.
arXiv Detail & Related papers (2022-02-22T04:14:45Z) - Fast Graph Sampling for Short Video Summarization using Gershgorin Disc
Alignment [52.577757919003844]
We study the problem of efficiently summarizing a short video into several paragraphs, leveraging recent progress in fast graph sampling.
Experimental results show that our algorithm achieves comparable video summarization as state-of-the-art methods, at a substantially reduced complexity.
arXiv Detail & Related papers (2021-10-21T18:43:00Z) - Correlation detection in trees for partial graph alignment [3.5880535198436156]
We consider alignment of graphs, which consists in finding a mapping between the nodes of two graphs which preserves most of the edges.
Our approach is to compare local structures in the two graphs, matching two nodes if their neighborhoods are 'close enough' for correlated graphs.
This problem can be rephrased in terms of testing whether a pair of branching trees is drawn from either a product distribution, or a correlated distribution.
arXiv Detail & Related papers (2021-07-15T22:02:27Z) - Solving correlation clustering with QAOA and a Rydberg qudit system: a
full-stack approach [94.37521840642141]
We study the correlation clustering problem using the quantum approximate optimization algorithm (QAOA) and qudits.
Specifically, we consider a neutral atom quantum computer and propose a full stack approach for correlation clustering.
We show the qudit implementation is superior to the qubit encoding as quantified by the gate count.
arXiv Detail & Related papers (2021-06-22T11:07:38Z) - Adversarial Linear Contextual Bandits with Graph-Structured Side
Observations [80.95090605985042]
A learning agent repeatedly chooses from a set of $K$ actions after being presented with a $d$-dimensional context vector.
The agent incurs and observes the loss of the chosen action, but also observes the losses of its neighboring actions in the observation structures.
Two efficient algorithms are developed based on textttEXP3.
arXiv Detail & Related papers (2020-12-10T15:40:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.