論文の概要: Data Augmentation for Electrocardiograms
- arxiv url: http://arxiv.org/abs/2204.04360v1
- Date: Sat, 9 Apr 2022 02:19:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-12 17:05:38.045075
- Title: Data Augmentation for Electrocardiograms
- Title(参考訳): 心電図データの増大
- Authors: Aniruddh Raghu, Divya Shanmugam, Eugene Pomerantsev, John Guttag,
Collin M. Stultz
- Abstract要約: 本研究では,データスカース心電図予測問題の性能向上にデータ拡張法が有効かどうかを検討する。
本稿では,タスクごとに最適化されたフレキシブルな拡張ポリシーを定義する新しい方法であるTaskAugを紹介する。
実験では、TaskAugが以前の作業と競合するか、改善していることがわかった。
- 参考スコア(独自算出の注目度): 2.8498944632323755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural network models have demonstrated impressive performance in predicting
pathologies and outcomes from the 12-lead electrocardiogram (ECG). However,
these models often need to be trained with large, labelled datasets, which are
not available for many predictive tasks of interest. In this work, we perform
an empirical study examining whether training time data augmentation methods
can be used to improve performance on such data-scarce ECG prediction problems.
We investigate how data augmentation strategies impact model performance when
detecting cardiac abnormalities from the ECG. Motivated by our finding that the
effectiveness of existing augmentation strategies is highly task-dependent, we
introduce a new method, TaskAug, which defines a flexible augmentation policy
that is optimized on a per-task basis. We outline an efficient learning
algorithm to do so that leverages recent work in nested optimization and
implicit differentiation. In experiments, considering three datasets and eight
predictive tasks, we find that TaskAug is competitive with or improves on prior
work, and the learned policies shed light on what transformations are most
effective for different tasks. We distill key insights from our experimental
evaluation, generating a set of best practices for applying data augmentation
to ECG prediction problems.
- Abstract(参考訳): ニューラルネットワークモデルは、12誘導心電図(ECG)の病態と結果を予測するのに顕著な性能を示した。
しかし、これらのモデルは大きなラベル付きデータセットでトレーニングする必要があることが多く、多くの予測タスクで利用できない。
本研究では,データスカース心電図予測問題の性能向上のために,トレーニング時間データ拡張手法が有効かどうかを実証研究する。
心電図から心臓異常を検出する際に,データ拡張戦略がモデル性能に与える影響について検討した。
既存の拡張戦略の有効性がタスク依存に大きく依存していることから,タスクごとに最適化されたフレキシブルな拡張ポリシーを定義する新しい方法であるTaskAugを導入する。
ネスト最適化と暗黙差分法における最近の研究を生かした,効率的な学習アルゴリズムを概説する。
実験では、3つのデータセットと8つの予測タスクを考慮すると、TaskAugは以前の作業と競合するか、改善していることがわかった。
実験結果から重要な知見を抽出し,ECG予測問題にデータ拡張を適用するためのベストプラクティスのセットを生成する。
関連論文リスト
- Boosting Few-Shot Learning with Disentangled Self-Supervised Learning and Meta-Learning for Medical Image Classification [8.975676404678374]
低データ体制下で訓練されたモデルの性能と一般化能力を改善するための戦略を提案する。
提案手法は、自己教師付き学習環境において学習した特徴をアンタングル化して、下流タスクの表現の堅牢性を向上する事前学習段階から開始する。
次に、メタファインニングのステップを導入し、メタトレーニングとメタテストフェーズの関連クラスを活用するが、レベルは変化する。
論文 参考訳(メタデータ) (2024-03-26T09:36:20Z) - Which Augmentation Should I Use? An Empirical Investigation of Augmentations for Self-Supervised Phonocardiogram Representation Learning [5.438725298163702]
Contrastive Self-Supervised Learning (SSL)はラベル付きデータの不足に対する潜在的な解決策を提供する。
1次元心電図(PCG)分類におけるコントラスト学習の最適化を提案する。
トレーニング分布によっては、完全教師付きモデルの有効性が最大32%低下し、SSLモデルは最大10%低下し、場合によっては改善される。
論文 参考訳(メタデータ) (2023-12-01T11:06:00Z) - Unsupervised Pre-Training Using Masked Autoencoders for ECG Analysis [4.3312979375047025]
本稿では、心電図(ECG)信号のためのマスク付きオートエンコーダ(MAE)に基づく教師なし事前トレーニング手法を提案する。
さらに、ECG分析のための完全なフレームワークを形成するためのタスク固有の微調整を提案する。
フレームワークは高レベルで普遍的で、特定のモデルアーキテクチャやタスクに個別に適応していない。
論文 参考訳(メタデータ) (2023-10-17T11:19:51Z) - Leveraging the Power of Data Augmentation for Transformer-based Tracking [64.46371987827312]
トラッキング用にカスタマイズされた2つのデータ拡張手法を提案する。
まず、動的探索半径機構と境界サンプルのシミュレーションにより、既存のランダムトリミングを最適化する。
第2に,背景干渉などの問題に対するモデルを可能にする,トークンレベルの機能混在強化戦略を提案する。
論文 参考訳(メタデータ) (2023-09-15T09:18:54Z) - Time Series Contrastive Learning with Information-Aware Augmentations [57.45139904366001]
コントラスト学習の鍵となる要素は、いくつかの先行を示唆する適切な拡張を選択して、実現可能な正のサンプルを構築することである。
対照的な学習タスクやデータセットに意味のある時系列データの増大をどうやって見つけるかは、未解決の問題である。
本稿では,時系列表現学習のための最適な拡張を適応的に選択する情報認識拡張を用いた新しいコントラスト学習手法であるInfoTSを提案する。
論文 参考訳(メタデータ) (2023-03-21T15:02:50Z) - Data augmentation for learning predictive models on EEG: a systematic
comparison [79.84079335042456]
脳波(EEG)分類タスクの深層学習は、ここ数年急速に増加している。
EEG分類タスクのディープラーニングは、比較的小さなEEGデータセットによって制限されている。
データ拡張は、コンピュータビジョンや音声などのアプリケーションにまたがる最先端のパフォーマンスを得るために重要な要素となっている。
論文 参考訳(メタデータ) (2022-06-29T09:18:15Z) - An Empirical Study on Distribution Shift Robustness From the Perspective
of Pre-Training and Data Augmentation [91.62129090006745]
本稿では,事前学習とデータ拡張の観点から分布シフト問題を考察する。
我々は,事前学習とデータ拡張に焦点を当てた,最初の総合的な実証的研究を行った。
論文 参考訳(メタデータ) (2022-05-25T13:04:53Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
対象データに事前学習されたモデルを微調整することは、多くのディープラーニングアプリケーションで広く利用されている。
近年の研究では、スクラッチからのトレーニングが、この事前トレーニング戦略に比較して、最終的なパフォーマンスを示すことが実証されている。
本稿では,対象タスクの一般化を改善するために,事前学習データからサブセットを選択する新しい選択戦略を提案する。
論文 参考訳(メタデータ) (2021-11-24T06:18:32Z) - Improving the efficacy of Deep Learning models for Heart Beat detection
on heterogeneous datasets [0.0]
ヘテロジニアスデータセットにディープラーニングモデルを適用する際の問題点について検討する。
本研究では,健常者からのデータに基づいてトレーニングしたモデルの性能が,心疾患患者に適用した場合に低下することを示す。
次に、異なるデータセットにモデルを適応させるためのTransfer Learningの使用を評価します。
論文 参考訳(メタデータ) (2021-10-26T14:26:55Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
心電図(Electrocardiogram、ECG)は、医学および医療において最も一般的に用いられる診断ツールの1つである。
深層学習法は心電図信号を用いた予測医療タスクにおいて有望な結果を得た。
本稿では、モデリングとアプリケーションの観点から、ECGデータに対するディープラーニング手法の体系的なレビューを行う。
論文 参考訳(メタデータ) (2019-12-28T02:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。