論文の概要: Boosting Few-Shot Learning with Disentangled Self-Supervised Learning and Meta-Learning for Medical Image Classification
- arxiv url: http://arxiv.org/abs/2403.17530v1
- Date: Tue, 26 Mar 2024 09:36:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 16:06:48.662416
- Title: Boosting Few-Shot Learning with Disentangled Self-Supervised Learning and Meta-Learning for Medical Image Classification
- Title(参考訳): 医用画像分類のためのアンタングル型自己監督学習とメタラーニングによるFew-Shot学習の強化
- Authors: Eva Pachetti, Sotirios A. Tsaftaris, Sara Colantonio,
- Abstract要約: 低データ体制下で訓練されたモデルの性能と一般化能力を改善するための戦略を提案する。
提案手法は、自己教師付き学習環境において学習した特徴をアンタングル化して、下流タスクの表現の堅牢性を向上する事前学習段階から開始する。
次に、メタファインニングのステップを導入し、メタトレーニングとメタテストフェーズの関連クラスを活用するが、レベルは変化する。
- 参考スコア(独自算出の注目度): 8.975676404678374
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background and objective: Employing deep learning models in critical domains such as medical imaging poses challenges associated with the limited availability of training data. We present a strategy for improving the performance and generalization capabilities of models trained in low-data regimes. Methods: The proposed method starts with a pre-training phase, where features learned in a self-supervised learning setting are disentangled to improve the robustness of the representations for downstream tasks. We then introduce a meta-fine-tuning step, leveraging related classes between meta-training and meta-testing phases but varying the granularity level. This approach aims to enhance the model's generalization capabilities by exposing it to more challenging classification tasks during meta-training and evaluating it on easier tasks but holding greater clinical relevance during meta-testing. We demonstrate the effectiveness of the proposed approach through a series of experiments exploring several backbones, as well as diverse pre-training and fine-tuning schemes, on two distinct medical tasks, i.e., classification of prostate cancer aggressiveness from MRI data and classification of breast cancer malignity from microscopic images. Results: Our results indicate that the proposed approach consistently yields superior performance w.r.t. ablation experiments, maintaining competitiveness even when a distribution shift between training and evaluation data occurs. Conclusion: Extensive experiments demonstrate the effectiveness and wide applicability of the proposed approach. We hope that this work will add another solution to the arsenal of addressing learning issues in data-scarce imaging domains.
- Abstract(参考訳): 背景と目的: 医用画像などの重要な領域でディープラーニングモデルを採用することは、トレーニングデータの限られた可用性に関連する課題を引き起こす。
低データ体制下で訓練されたモデルの性能と一般化能力を改善するための戦略を提案する。
方法: 提案手法は, 自己教師付き学習環境において学習した特徴を, 下流タスクの表現の堅牢性を改善するために切り離す事前学習段階から始める。
次に、メタファインニングのステップを導入し、メタトレーニングとメタテストフェーズの関連クラスを活用するが、粒度レベルは変化する。
本手法は,メタトレーニング時により困難な分類タスクに公開し,より簡単なタスクで評価することで,メタテスト時の臨床関連性を高めることによって,モデルの一般化能力を高めることを目的とする。
提案手法は,MRIデータからの前立腺癌攻撃性の分類と顕微鏡画像からの乳癌悪性度の分類という,2つの異なる医療課題において,いくつかのバックボーン,多様な事前訓練および微調整スキームを探索する一連の実験を通じて,提案手法の有効性を実証する。
結果: 提案手法は, トレーニングと評価データ間の分散シフトが生じた場合でも, 競争力を維持しつつ, 良好な性能を示すことが示唆された。
結論: 広範囲にわたる実験により,提案手法の有効性と適用性を示した。
この研究は、データスカース画像領域における学習問題に対処するための新たなソリューションとして、さらに追加されることを願っている。
関連論文リスト
- Jumpstarting Surgical Computer Vision [2.7396997668655163]
我々は、多様な外科的データセットを柔軟に活用するために、自己教師付き学習を採用する。
腹腔鏡下胆嚢摘出術と腹腔鏡下子宮摘出術の位相認識と安全性の検討を行った。
事前トレーニングデータセットの構成は、さまざまな下流タスクに対するSSLメソッドの有効性に大きな影響を与える可能性がある。
論文 参考訳(メタデータ) (2023-12-10T18:54:16Z) - Causality-Driven One-Shot Learning for Prostate Cancer Grading from MRI [1.049712834719005]
本稿では,画像中の弱い因果信号を学習し,活用する医用画像の自動分類手法を提案する。
我々のフレームワークは畳み込みニューラルネットワークのバックボーンと因果抽出モジュールで構成されている。
本研究は,特徴間の因果関係が,関連情報を識別するモデルの能力を高める上で重要な役割を担っていることを示す。
論文 参考訳(メタデータ) (2023-09-19T16:08:33Z) - Data Augmentation-Based Unsupervised Domain Adaptation In Medical
Imaging [0.709016563801433]
脳MRI領域分割における堅牢な領域適応のための教師なし手法を提案する。
その結果,提案手法は高い精度を実現し,幅広い適用性を示し,各種タスクにおけるドメインシフトに対する顕著な堅牢性を示した。
論文 参考訳(メタデータ) (2023-08-08T17:00:11Z) - MedFMC: A Real-world Dataset and Benchmark For Foundation Model
Adaptation in Medical Image Classification [41.16626194300303]
ファンデーションモデルは、多くの場合、大規模なデータで事前訓練されているが、様々なビジョンや言語アプリケーションのジャンプ開始において、最も成功している。
最近の進歩により、下流タスクにおける基礎モデルの適応は、少数のトレーニングサンプルだけで効率的に行えるようになった。
しかし, 医用画像解析におけるそのような学習パラダイムの適用は, 一般に公開されているデータやベンチマークが不足しているため, 依然として少ない。
論文 参考訳(メタデータ) (2023-06-16T01:46:07Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
本稿では,視覚および言語入力を共通空間に埋め込んだ医用視覚言語モデル(VLM)について検討する。
本稿では,新しい画像領域やテキスト領域への汎用事前学習モデルの適用など,低データ性能向上のためのいくつかの候補手法について検討する。
テキスト・ツー・イメージ検索をベンチマークとして,2つの胸部X線および放射線学的報告を用いた可変サイズのトレーニングデータセットを用いて,これらの手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-03-30T18:20:00Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
本稿では,モデル実装の異なるフェーズに対して,MedISegの一連のトリックを収集する。
本稿では,これらの手法の有効性を一貫したベースライン上で実験的に検討する。
私たちはまた、それぞれのコンポーネントがプラグインとプレイの利点を持つ強力なMedISegリポジトリをオープンソースにしました。
論文 参考訳(メタデータ) (2022-09-21T12:30:05Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
MedMNISTコレクションの連続的な疾患分類のためのベンチマークであるLifeLongerを紹介する。
タスクとクラスでの病気の漸進的な学習は、モデルをスクラッチから再トレーニングすることなく、新しいサンプルを分類する問題に対処する。
クロスドメインインクリメンタル学習は、これまで得られた知識を維持しながら、異なる機関から派生したデータセットを扱う問題に対処する。
論文 参考訳(メタデータ) (2022-04-12T12:25:05Z) - Continual Active Learning Using Pseudo-Domains for Limited Labelling
Resources and Changing Acquisition Characteristics [2.6105699925188257]
臨床ルーチン中の医療画像における機械学習は、スキャナープロトコル、ハードウェア、ポリシーの変更によって損なわれる。
マルチスキャナ環境下で,医療画像のストリーム上で動作する連続的な能動学習手法を提案する。
論文 参考訳(メタデータ) (2021-11-25T13:11:49Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
糖尿病網膜症における訓練方法の違いによる影響を比較検討した。
本稿では,定量的性能,学習した特徴表現の統計,解釈可能性,画像歪みに対する頑健性など,さまざまな側面について検討する。
以上の結果から,ImageNet事前学習モデルでは,画像歪みに対する性能,一般化,堅牢性が著しく向上していることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T08:32:45Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
医用画像セグメンテーションのための新しい学習ベースデータ拡張法を開発した。
本手法では,データ拡張モジュールと後続のセグメンテーションモジュールをエンドツーエンドのトレーニング方法で一貫した損失と,革新的に組み合わせる。
提案法の有効性を検証したCT腎腫瘍分節法について,本法を広範囲に評価した。
論文 参考訳(メタデータ) (2020-02-22T14:10:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。