論文の概要: Attention guided global enhancement and local refinement network for
semantic segmentation
- arxiv url: http://arxiv.org/abs/2204.04363v1
- Date: Sat, 9 Apr 2022 02:32:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-15 07:52:16.807167
- Title: Attention guided global enhancement and local refinement network for
semantic segmentation
- Title(参考訳): 意味的セグメンテーションのための注意誘導グローバルエンハンスメントと局所改善ネットワーク
- Authors: Jiangyun Li, Sen Zha, Chen Chen, Meng Ding, Tianxiang Zhang, and Hong
Yu
- Abstract要約: エンコーダ・デコーダアーキテクチャを用いて,軽量なセマンティックセマンティックセマンティクスネットワークを開発した。
高レベル特徴マップからグローバル情報を集約するグローバルエンハンスメント手法を提案する。
ローカルリファインメントモジュールは、デコーダ機能をセマンティックガイダンスとして利用することによって開発される。
この2つの手法はContext Fusion Blockに統合され、それに基づいてAttention Guided Global enhancement and Local refinement Network (AGLN) が精巧に設計されている。
- 参考スコア(独自算出の注目度): 5.881350024099048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The encoder-decoder architecture is widely used as a lightweight semantic
segmentation network. However, it struggles with a limited performance compared
to a well-designed Dilated-FCN model for two major problems. First, commonly
used upsampling methods in the decoder such as interpolation and deconvolution
suffer from a local receptive field, unable to encode global contexts. Second,
low-level features may bring noises to the network decoder through skip
connections for the inadequacy of semantic concepts in early encoder layers. To
tackle these challenges, a Global Enhancement Method is proposed to aggregate
global information from high-level feature maps and adaptively distribute them
to different decoder layers, alleviating the shortage of global contexts in the
upsampling process. Besides, a Local Refinement Module is developed by
utilizing the decoder features as the semantic guidance to refine the noisy
encoder features before the fusion of these two (the decoder features and the
encoder features). Then, the two methods are integrated into a Context Fusion
Block, and based on that, a novel Attention guided Global enhancement and Local
refinement Network (AGLN) is elaborately designed. Extensive experiments on
PASCAL Context, ADE20K, and PASCAL VOC 2012 datasets have demonstrated the
effectiveness of the proposed approach. In particular, with a vanilla
ResNet-101 backbone, AGLN achieves the state-of-the-art result (56.23% mean
IoU) on the PASCAL Context dataset. The code is available at
https://github.com/zhasen1996/AGLN.
- Abstract(参考訳): エンコーダ-デコーダアーキテクチャは軽量なセグメンテーションネットワークとして広く使われている。
しかし、2つの大きな問題に対してよく設計されたDilated-FCNモデルと比較して、限られた性能に苦しむ。
まず、補間やデコンボリューションのようなデコーダでよく使われるアップサンプリング手法は、グローバルコンテキストをエンコードできない局所的な受容領域に悩まされる。
第二に、低レベルの機能は、初期エンコーダ層におけるセマンティックな概念の不適切な接続をスキップすることで、ネットワークデコーダにノイズをもたらす可能性がある。
これらの課題に対処するために,高レベル特徴マップからグローバル情報を集約し,異なるデコーダ層に適応的に分散し,アップサンプリングプロセスにおけるグローバルコンテキストの不足を軽減するグローバル拡張手法を提案する。
さらに、ローカルリファインメントモジュールは、デコーダ機能をセマンティックガイダンスとして利用して、これらの2つの融合前にノイズの多いエンコーダ機能を洗練させる(デコーダ機能とエンコーダ機能)。
次に,この2つの手法をContext Fusion Blockに統合し,それに基づいてAGLN(Atention Guided Global enhancement and Local refinement Network)を精巧に設計する。
PASCAL Context、ADE20K、PASCAL VOC 2012データセットに関する大規模な実験は、提案手法の有効性を実証した。
特に、バニラResNet-101バックボーンにより、AGLNはPASCALコンテキストデータセット上で最先端の結果(56.23%はIoU)を達成する。
コードはhttps://github.com/zhasen1996/aglnで入手できる。
関連論文リスト
- Local-to-Global Cross-Modal Attention-Aware Fusion for HSI-X Semantic Segmentation [19.461033552684576]
HSI-X分類のためのローカル・グローバル・クロスモーダル・アテンション・アウェア・フュージョン(LoGoCAF)フレームワークを提案する。
LoGoCAFは、HSIとXのモダリティから情報を学ぶために、ピクセルからピクセルまでのセマンティックセマンティックセマンティックセマンティクスアーキテクチャを採用している。
論文 参考訳(メタデータ) (2024-06-25T16:12:20Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
本稿では,変化領域を正確に推定するために,リッチな文脈情報を利用する効率的な変化検出フレームワークELGC-Netを提案する。
提案するELGC-Netは、リモートセンシング変更検出ベンチマークにおいて、最先端の性能を新たに設定する。
また,ELGC-Net-LWも導入した。
論文 参考訳(メタデータ) (2024-03-26T17:46:25Z) - Adjacent Context Coordination Network for Salient Object Detection in
Optical Remote Sensing Images [102.75699068451166]
本稿では,光RSI-SODのためのエンコーダ・デコーダアーキテクチャにおいて,隣接した特徴のコーディネートを探索するための新しいアジャセントコンテキストコーディネートネットワーク(ACCoNet)を提案する。
提案されたACCoNetは、9つの評価基準の下で22の最先端メソッドを上回り、1つのNVIDIA Titan X GPU上で81fpsで動作する。
論文 参考訳(メタデータ) (2022-03-25T14:14:55Z) - Transformer Meets DCFAM: A Novel Semantic Segmentation Scheme for
Fine-Resolution Remote Sensing Images [6.171417925832851]
Swin Transformerをバックボーンとして導入し、コンテキスト情報を完全に抽出します。
また、高密度接続特徴集合モジュール(DCFAM)と呼ばれる新しいデコーダを設計し、解像度を復元し、セグメンテーションマップを生成する。
論文 参考訳(メタデータ) (2021-04-25T11:34:22Z) - A Holistically-Guided Decoder for Deep Representation Learning with
Applications to Semantic Segmentation and Object Detection [74.88284082187462]
一般的な戦略の1つは、バックボーンネットワークに拡張畳み込みを採用し、高解像度のフィーチャーマップを抽出することです。
本稿では,高分解能なセマンティクスリッチな特徴マップを得るために紹介される,新たなホリスティック誘導デコーダを提案する。
論文 参考訳(メタデータ) (2020-12-18T10:51:49Z) - Global Context Aware RCNN for Object Detection [1.1939762265857436]
我々はGCA (Global Context Aware) RCNNと呼ばれる新しいエンドツーエンドのトレーニング可能なフレームワークを提案する。
GCAフレームワークの中核となるコンポーネントは、グローバルな特徴ピラミッドとアテンション戦略の両方を特徴抽出と特徴改善に使用する、コンテキスト認識メカニズムである。
最後に,モデルの複雑さと計算負担をわずかに増加させる軽量バージョンを提案する。
論文 参考訳(メタデータ) (2020-12-04T14:56:46Z) - EfficientFCN: Holistically-guided Decoding for Semantic Segmentation [49.27021844132522]
最先端セマンティックセマンティックセグメンテーションアルゴリズムは主に拡張されたFully Convolutional Networks (DilatedFCN)に基づいている
本稿では,拡張畳み込みのないイメージネット事前学習ネットワークをバックボーンとする,効率的なFCNを提案する。
このようなフレームワークは、計算コストの1/3しか持たない最先端の手法に比べて、同等またはそれ以上の性能を達成する。
論文 参考訳(メタデータ) (2020-08-24T14:48:23Z) - Dense Residual Network: Enhancing Global Dense Feature Flow for
Character Recognition [75.4027660840568]
本稿では,すべての畳み込み層から階層的特徴をフルに活用することにより,局所的・大域的特徴フローを改善する方法について検討する。
技術的には、テキスト認識のための効率的で効果的なCNNフレームワークであるFDRN(Fast Dense Residual Network)を提案する。
論文 参考訳(メタデータ) (2020-01-23T06:55:08Z) - Bi-Decoder Augmented Network for Neural Machine Translation [108.3931242633331]
本稿では,ニューラルマシン翻訳タスクのためのBi-Decoder Augmented Network (BiDAN)を提案する。
各デコーダは入力されたテキストの表現を対応する言語に変換するため、2つの目的語と共同でトレーニングすることで、共有エンコーダは言語に依存しない意味空間を生成することができる。
論文 参考訳(メタデータ) (2020-01-14T02:05:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。