Divergence-aware Federated Self-Supervised Learning
- URL: http://arxiv.org/abs/2204.04385v1
- Date: Sat, 9 Apr 2022 04:15:02 GMT
- Title: Divergence-aware Federated Self-Supervised Learning
- Authors: Weiming Zhuang, Yonggang Wen, Shuai Zhang
- Abstract summary: We introduce a generalized FedSSL framework that embraces existing SSL methods based on Siamese networks.
We then propose a new approach for model update, Federated Divergence-aware Exponential Moving Average update (FedEMA)
- Score: 16.025681567222477
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised learning (SSL) is capable of learning remarkable
representations from centrally available data. Recent works further implement
federated learning with SSL to learn from rapidly growing decentralized
unlabeled images (e.g., from cameras and phones), often resulted from privacy
constraints. Extensive attention has been paid to SSL approaches based on
Siamese networks. However, such an effort has not yet revealed deep insights
into various fundamental building blocks for the federated self-supervised
learning (FedSSL) architecture. We aim to fill in this gap via in-depth
empirical study and propose a new method to tackle the non-independently and
identically distributed (non-IID) data problem of decentralized data. Firstly,
we introduce a generalized FedSSL framework that embraces existing SSL methods
based on Siamese networks and presents flexibility catering to future methods.
In this framework, a server coordinates multiple clients to conduct SSL
training and periodically updates local models of clients with the aggregated
global model. Using the framework, our study uncovers unique insights of
FedSSL: 1) stop-gradient operation, previously reported to be essential, is not
always necessary in FedSSL; 2) retaining local knowledge of clients in FedSSL
is particularly beneficial for non-IID data. Inspired by the insights, we then
propose a new approach for model update, Federated Divergence-aware Exponential
Moving Average update (FedEMA). FedEMA updates local models of clients
adaptively using EMA of the global model, where the decay rate is dynamically
measured by model divergence. Extensive experiments demonstrate that FedEMA
outperforms existing methods by 3-4% on linear evaluation. We hope that this
work will provide useful insights for future research.
Related papers
- Erasing the Bias: Fine-Tuning Foundation Models for Semi-Supervised Learning [4.137391543972184]
Semi-supervised learning (SSL) has witnessed remarkable progress, resulting in numerous method variations.
In this paper, we present a novel SSL approach named FineSSL that significantly addresses this limitation by adapting pre-trained foundation models.
We demonstrate that FineSSL sets a new state of the art for SSL on multiple benchmark datasets, reduces the training cost by over six times, and can seamlessly integrate various fine-tuning and modern SSL algorithms.
arXiv Detail & Related papers (2024-05-20T03:33:12Z) - Benchmark for Uncertainty & Robustness in Self-Supervised Learning [0.0]
Self-Supervised Learning is crucial for real-world applications, especially in data-hungry domains such as healthcare and self-driving cars.
In this paper, we explore variants of SSL methods, including Jigsaw Puzzles, Context, Rotation, Geometric Transformations Prediction for vision, as well as BERT and GPT for language tasks.
Our goal is to create a benchmark with outputs from experiments, providing a starting point for new SSL methods in Reliable Machine Learning.
arXiv Detail & Related papers (2022-12-23T15:46:23Z) - Knowledge-Aware Federated Active Learning with Non-IID Data [75.98707107158175]
We propose a federated active learning paradigm to efficiently learn a global model with limited annotation budget.
The main challenge faced by federated active learning is the mismatch between the active sampling goal of the global model on the server and that of the local clients.
We propose Knowledge-Aware Federated Active Learning (KAFAL), which consists of Knowledge-Specialized Active Sampling (KSAS) and Knowledge-Compensatory Federated Update (KCFU)
arXiv Detail & Related papers (2022-11-24T13:08:43Z) - Does Decentralized Learning with Non-IID Unlabeled Data Benefit from
Self Supervision? [51.00034621304361]
We study decentralized learning with unlabeled data through the lens of self-supervised learning (SSL)
We study the effectiveness of contrastive learning algorithms under decentralized learning settings.
arXiv Detail & Related papers (2022-10-20T01:32:41Z) - Federated Zero-Shot Learning for Visual Recognition [55.65879596326147]
We propose a novel Federated Zero-Shot Learning FedZSL framework.
FedZSL learns a central model from the decentralized data residing on edge devices.
The effectiveness and robustness of FedZSL are demonstrated by extensive experiments conducted on three zero-shot benchmark datasets.
arXiv Detail & Related papers (2022-09-05T14:49:34Z) - Exploring Semantic Attributes from A Foundation Model for Federated
Learning of Disjoint Label Spaces [46.59992662412557]
In this work, we consider transferring mid-level semantic knowledge (such as attribute) which is not sensitive to specific objects of interest.
We formulate a new Federated Zero-Shot Learning (FZSL) paradigm to learn mid-level semantic knowledge at multiple local clients.
To improve model discriminative ability, we propose to explore semantic knowledge augmentation from external knowledge.
arXiv Detail & Related papers (2022-08-29T10:05:49Z) - DATA: Domain-Aware and Task-Aware Pre-training [94.62676913928831]
We present DATA, a simple yet effective NAS approach specialized for self-supervised learning (SSL)
Our method achieves promising results across a wide range of computation costs on downstream tasks, including image classification, object detection and semantic segmentation.
arXiv Detail & Related papers (2022-03-17T02:38:49Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - Segmented Federated Learning for Adaptive Intrusion Detection System [0.6445605125467573]
Cyberattacks cause organizations great financial, and reputation harm.
Current network intrusion detection systems (NIDS) seem to be insufficent.
We propose a Segmented-Federated Learning (Segmented-FL) learning scheme for a more efficient NIDS.
arXiv Detail & Related papers (2021-07-02T07:47:05Z) - Decentralized Federated Learning via Mutual Knowledge Transfer [37.5341683644709]
Decentralized federated learning (DFL) is a problem in the Internet of things (IoT) systems.
We propose a mutual knowledge transfer (Def-KT) algorithm where local clients fuse models by transferring their learnt knowledge to each other.
Our experiments on the MNIST, Fashion-MNIST, and CIFAR10 datasets reveal datasets that the proposed Def-KT algorithm significantly outperforms the baseline DFL methods.
arXiv Detail & Related papers (2020-12-24T01:43:53Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
In domains where data are sensitive or private, there is great value in methods that can learn in a distributed manner without the data ever leaving the local devices.
We propose Weight Anonymized Factorization for Federated Learning (WAFFLe), an approach that combines the Indian Buffet Process with a shared dictionary of weight factors for neural networks.
arXiv Detail & Related papers (2020-08-13T04:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.