A Spiking Neural Network Structure Implementing Reinforcement Learning
- URL: http://arxiv.org/abs/2204.04431v2
- Date: Fri, 22 Sep 2023 19:12:49 GMT
- Title: A Spiking Neural Network Structure Implementing Reinforcement Learning
- Authors: Mikhail Kiselev
- Abstract summary: In the present paper, I describe an SNN structure which, seemingly, can be used in wide range of reinforcement learning tasks.
The SNN structure considered in the paper includes spiking neurons described by a generalization of the LIFAT (leaky integrate-and-fire neuron with adaptive threshold) model.
My concept is based on very general assumptions about RL task characteristics and has no visible limitations on its applicability.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: At present, implementation of learning mechanisms in spiking neural networks
(SNN) cannot be considered as a solved scientific problem despite plenty of SNN
learning algorithms proposed. It is also true for SNN implementation of
reinforcement learning (RL), while RL is especially important for SNNs because
of its close relationship to the domains most promising from the viewpoint of
SNN application such as robotics. In the present paper, I describe an SNN
structure which, seemingly, can be used in wide range of RL tasks. The
distinctive feature of my approach is usage of only the spike forms of all
signals involved - sensory input streams, output signals sent to actuators and
reward/punishment signals. Besides that, selecting the neuron/plasticity
models, I was guided by the requirement that they should be easily implemented
on modern neurochips. The SNN structure considered in the paper includes
spiking neurons described by a generalization of the LIFAT (leaky
integrate-and-fire neuron with adaptive threshold) model and a simple spike
timing dependent synaptic plasticity model (a generalization of
dopamine-modulated plasticity). My concept is based on very general assumptions
about RL task characteristics and has no visible limitations on its
applicability. To test it, I selected a simple but non-trivial task of training
the network to keep a chaotically moving light spot in the view field of an
emulated DVS camera. Successful solution of this RL problem by the SNN
described can be considered as evidence in favor of efficiency of my approach.
Related papers
- Training Spiking Neural Networks via Augmented Direct Feedback Alignment [3.798885293742468]
Spiking neural networks (SNNs) are promising solutions for implementing neural networks in neuromorphic devices.
However, the nondifferentiable nature of SNN neurons makes it a challenge to train them.
In this paper, we propose using augmented direct feedback alignment (aDFA), a gradient-free approach based on random projection, to train SNNs.
arXiv Detail & Related papers (2024-09-12T06:22:44Z) - Accurate Mapping of RNNs on Neuromorphic Hardware with Adaptive Spiking Neurons [2.9410174624086025]
We present a $SigmaDelta$-low-pass RNN (lpRNN) for mapping rate-based RNNs to spiking neural networks (SNNs)
An adaptive spiking neuron model encodes signals using $SigmaDelta$-modulation and enables precise mapping.
We demonstrate the implementation of the lpRNN on Intel's neuromorphic research chip Loihi.
arXiv Detail & Related papers (2024-07-18T14:06:07Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
We focus on the task where the agent needs to learn multi-dimensional deterministic policies to control.
Most existing spike-based RL methods take the firing rate as the output of SNNs, and convert it to represent continuous action space (i.e., the deterministic policy) through a fully-connected layer.
To develop a fully spiking actor network without any floating-point matrix operations, we draw inspiration from the non-spiking interneurons found in insects.
arXiv Detail & Related papers (2024-01-09T07:31:34Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Toward Robust Spiking Neural Network Against Adversarial Perturbation [22.56553160359798]
spiking neural networks (SNNs) are deployed increasingly in real-world efficiency critical applications.
Researchers have already demonstrated an SNN can be attacked with adversarial examples.
To the best of our knowledge, this is the first analysis on robust training of SNNs.
arXiv Detail & Related papers (2022-04-12T21:26:49Z) - Deep Reinforcement Learning with Spiking Q-learning [51.386945803485084]
spiking neural networks (SNNs) are expected to realize artificial intelligence (AI) with less energy consumption.
It provides a promising energy-efficient way for realistic control tasks by combining SNNs with deep reinforcement learning (RL)
arXiv Detail & Related papers (2022-01-21T16:42:11Z) - Spiking Neural Networks with Single-Spike Temporal-Coded Neurons for
Network Intrusion Detection [6.980076213134383]
Spiking neural network (SNN) is interesting due to its strong bio-plausibility and high energy efficiency.
However, its performance is falling far behind conventional deep neural networks (DNNs)
arXiv Detail & Related papers (2020-10-15T14:46:18Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.