論文の概要: IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG
Classification
- arxiv url: http://arxiv.org/abs/2204.05116v1
- Date: Wed, 6 Apr 2022 16:29:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-17 07:38:33.822392
- Title: IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG
Classification
- Title(参考訳): IMLE-Net:ECG分類のための解釈可能なマルチレベルマルチチャネルモデル
- Authors: Likith Reddy, Vivek Talwar, Shanmukh Alle, Raju. S. Bapi, U. Deva
Priyakumar
- Abstract要約: 臨床環境では、心臓科医が標準12チャンネル心電図記録に基づいて診断を行う。
本稿では,標準ECG記録で利用可能なマルチチャネル情報を活用し,ビート,リズム,チャネルレベルのパターンを学習するモデルを提案する。
実験結果から,マクロ平均ROC-AUCスコアは0.9216,平均精度は88.85%,最大F1スコアは0.8057であった。
- 参考スコア(独自算出の注目度): 0.9449650062296824
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Early detection of cardiovascular diseases is crucial for effective treatment
and an electrocardiogram (ECG) is pivotal for diagnosis. The accuracy of Deep
Learning based methods for ECG signal classification has progressed in recent
years to reach cardiologist-level performance. In clinical settings, a
cardiologist makes a diagnosis based on the standard 12-channel ECG recording.
Automatic analysis of ECG recordings from a multiple-channel perspective has
not been given enough attention, so it is essential to analyze an ECG recording
from a multiple-channel perspective. We propose a model that leverages the
multiple-channel information available in the standard 12-channel ECG
recordings and learns patterns at the beat, rhythm, and channel level. The
experimental results show that our model achieved a macro-averaged ROC-AUC
score of 0.9216, mean accuracy of 88.85\%, and a maximum F1 score of 0.8057 on
the PTB-XL dataset. The attention visualization results from the interpretable
model are compared against the cardiologist's guidelines to validate the
correctness and usability.
- Abstract(参考訳): 心血管疾患の早期発見は治療に不可欠であり,心電図(ECG)は診断に重要である。
近年,心電図信号分類のためのディープラーニングに基づく手法の精度が向上し,心臓科レベルの評価が進んでいる。
臨床では、心臓科医が標準12チャンネル心電図記録に基づいて診断を行う。
マルチチャネルの観点からのECG記録の自動解析は十分に注目されていないため,マルチチャネルの観点からのECG記録の分析が不可欠である。
標準12チャンネルのECG記録で利用可能なマルチチャネル情報を利用して、ビート、リズム、チャンネルレベルのパターンを学習するモデルを提案する。
PTB-XLデータセットでは,マクロ平均ROC-AUCスコアが0.9216,平均精度88.85\%,最大F1スコアが0.8057であった。
解釈可能なモデルによる注意の可視化結果は、心臓科医のガイドラインと比較し、正確性とユーザビリティを検証した。
関連論文リスト
- Self-supervised Anomaly Detection Pretraining Enhances Long-tail ECG Diagnosis [32.37717219026923]
現在のコンピュータ支援心電図診断システムでは, まれながら重要な心疾患の診断に苦慮している。
本研究は、この制限に対処するために、自己教師付き異常検出プリトレーニングを用いた新しいアプローチを提案する。
異常検出モデルは、正常な心臓パターンからの微妙な偏差を検出し、局所化するように設計されている。
論文 参考訳(メタデータ) (2024-08-30T09:48:47Z) - Deep Learning Models for Arrhythmia Classification Using Stacked
Time-frequency Scalogram Images from ECG Signals [4.659427498118277]
本稿では,心電図に基づく不整脈分類のためのAI自動分類システムを提案する。
深層学習に基づく解法は心電図に基づく不整脈分類のために提案されている。
論文 参考訳(メタデータ) (2023-12-01T03:16:32Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
犬心電図(ECG)の評価には熟練した獣医が必要である。
心電図の解釈と診断支援のための獣医師の現在の利用状況は限られている。
犬の心電図配列を正常または異常と分類するためのディープ畳み込みニューラルネットワーク(CNN)アプローチを実装した。
論文 参考訳(メタデータ) (2023-05-17T09:06:39Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - A lightweight hybrid CNN-LSTM model for ECG-based arrhythmia detection [0.0]
本稿では,8種類の心不整脈と正常リズムの高精度検出のための光深度学習手法を提案する。
各種心電図信号を用いた不整脈分類モデルの試作と試験を行った。
論文 参考訳(メタデータ) (2022-08-29T05:01:04Z) - Self-supervised contrastive learning of echocardiogram videos enables
label-efficient cardiac disease diagnosis [48.64462717254158]
心エコービデオを用いた自己教師型コントラスト学習手法であるエコーCLRを開発した。
左室肥大症 (LVH) と大動脈狭窄症 (AS) の分類成績は,EchoCLR の訓練により有意に改善した。
EchoCLRは、医療ビデオの表現を学習する能力に特有であり、SSLがラベル付きデータセットからラベル効率の高い疾患分類を可能にすることを実証している。
論文 参考訳(メタデータ) (2022-07-23T19:17:26Z) - Estimation of atrial fibrillation from lead-I ECGs: Comparison with
cardiologists and machine learning model (CurAlive), a clinical validation
study [0.0]
本研究では,人工知能を用いた心房細動検出法を提案する。
本研究の目的は, 心臓科医と人工知能の診断精度をリードI心電図と比較することである。
論文 参考訳(メタデータ) (2021-04-15T12:50:16Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
本研究は,243名の非侵襲的特徴(年齢,性別,左室容積率,HRV15)を用いて,一連のANNの訓練と評価を行った。
最高の結果は、7つの入力パラメータと7つの隠れノードを使用して、トレーニングと検証データセットに対して98.9%と82%の精度で得られた。
論文 参考訳(メタデータ) (2020-10-29T19:14:41Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
我々は,心電図の診断を分類するために,形態や信号処理機能に適合した勾配強化木のアンサンブルを用いたアルゴリズムを構築した。
各リードについて、心拍変動、PQRSTテンプレート形状、全信号波形から特徴を導出する。
各クラスに属するECGインスタンスの確率を予測するため、全12項目の特徴と合わせて、勾配を増す決定ツリーの集合に適合する。
論文 参考訳(メタデータ) (2020-10-21T18:11:36Z) - Interpretable Deep Learning for Automatic Diagnosis of 12-lead
Electrocardiogram [15.464768773761527]
12誘導心電図記録における心不整脈のマルチラベル分類のためのディープニューラルネットワークを開発した。
提案モデルでは、受信機動作特性曲線(AUC)0.970、F1スコア0.813の平均領域を達成した。
最も優れたリードは、12のリードのうち、リードI、aVR、V5である。
論文 参考訳(メタデータ) (2020-10-20T14:51:00Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。