Mixture-of-experts VAEs can disregard variation in surjective multimodal
data
- URL: http://arxiv.org/abs/2204.05229v1
- Date: Mon, 11 Apr 2022 16:22:51 GMT
- Title: Mixture-of-experts VAEs can disregard variation in surjective multimodal
data
- Authors: Jannik Wolff, Tassilo Klein, Moin Nabi, Rahul G. Krishnan, Shinichi
Nakajima
- Abstract summary: We consider subjective data, where single datapoints from one modality describe multiple datapoints from another modality.
We theoretically and empirically demonstrate that multimodal VAEs with a mixture of experts posterior can struggle to capture variability in such surjective data.
- Score: 23.731871165711635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning systems are often deployed in domains that entail data from
multiple modalities, for example, phenotypic and genotypic characteristics
describe patients in healthcare. Previous works have developed multimodal
variational autoencoders (VAEs) that generate several modalities. We consider
subjective data, where single datapoints from one modality (such as class
labels) describe multiple datapoints from another modality (such as images). We
theoretically and empirically demonstrate that multimodal VAEs with a mixture
of experts posterior can struggle to capture variability in such surjective
data.
Related papers
- MIND: Modality-Informed Knowledge Distillation Framework for Multimodal Clinical Prediction Tasks [50.98856172702256]
We propose the Modality-INformed knowledge Distillation (MIND) framework, a multimodal model compression approach.
MIND transfers knowledge from ensembles of pre-trained deep neural networks of varying sizes into a smaller multimodal student.
We evaluate MIND on binary and multilabel clinical prediction tasks using time series data and chest X-ray images.
arXiv Detail & Related papers (2025-02-03T08:50:00Z) - Multimodal Fusion on Low-quality Data: A Comprehensive Survey [110.22752954128738]
This paper surveys the common challenges and recent advances of multimodal fusion in the wild.
We identify four main challenges that are faced by multimodal fusion on low-quality data.
This new taxonomy will enable researchers to understand the state of the field and identify several potential directions.
arXiv Detail & Related papers (2024-04-27T07:22:28Z) - Disentangling shared and private latent factors in multimodal
Variational Autoencoders [6.680930089714339]
Multimodal Variational Autoencoders, such as MVAE and MMVAE, are a natural choice for inferring those underlying latent factors and separating shared variation from private.
We demonstrate limitations of existing models, and propose a modification how to make them more robust to modality-specific variation.
Our findings are supported by experiments on synthetic as well as various real-world multi-omics data sets.
arXiv Detail & Related papers (2024-03-10T23:11:05Z) - Learning multi-modal generative models with permutation-invariant encoders and tighter variational objectives [5.549794481031468]
Devising deep latent variable models for multi-modal data has been a long-standing theme in machine learning research.
In this work, we consider a variational objective that can tightly approximate the data log-likelihood.
We develop more flexible aggregation schemes that avoid the inductive biases in PoE or MoE approaches.
arXiv Detail & Related papers (2023-09-01T10:32:21Z) - Cascaded Multi-Modal Mixing Transformers for Alzheimer's Disease
Classification with Incomplete Data [8.536869574065195]
Multi-Modal Mixing Transformer (3MAT) is a disease classification transformer that not only leverages multi-modal data but also handles missing data scenarios.
We propose a novel modality dropout mechanism to ensure an unprecedented level of modality independence and robustness to handle missing data scenarios.
arXiv Detail & Related papers (2022-10-01T11:31:02Z) - Encoding Domain Knowledge in Multi-view Latent Variable Models: A
Bayesian Approach with Structured Sparsity [7.811916700683125]
MuVI is a novel approach for domain-informed multi-view latent variable models.
We demonstrate that our model is able to integrate noisy domain expertise in form of feature sets.
arXiv Detail & Related papers (2022-04-13T08:22:31Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Self-Supervised Multimodal Domino: in Search of Biomarkers for
Alzheimer's Disease [19.86082635340699]
We propose a taxonomy of all reasonable ways to organize self-supervised representation-learning algorithms.
We first evaluate models on toy multimodal MNIST datasets and then apply them to a multimodal neuroimaging dataset with Alzheimer's disease patients.
Results show that the proposed approach outperforms previous self-supervised encoder-decoder methods.
arXiv Detail & Related papers (2020-12-25T20:28:13Z) - Removing Bias in Multi-modal Classifiers: Regularization by Maximizing
Functional Entropies [88.0813215220342]
Some modalities can more easily contribute to the classification results than others.
We develop a method based on the log-Sobolev inequality, which bounds the functional entropy with the functional-Fisher-information.
On the two challenging multi-modal datasets VQA-CPv2 and SocialIQ, we obtain state-of-the-art results while more uniformly exploiting the modalities.
arXiv Detail & Related papers (2020-10-21T07:40:33Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
In hospitals, data are siloed to specific information systems that make the same information available under different modalities.
This offers unique opportunities to obtain and use at train-time those multiple views of the same information that might not always be available at test-time.
We propose an innovative framework that makes the most of available data by learning good representations of a multi-modal input that are resilient to modality dropping at test-time.
arXiv Detail & Related papers (2020-10-20T20:05:35Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.