Independent Natural Policy Gradient Methods for Potential Games:
Finite-time Global Convergence with Entropy Regularization
- URL: http://arxiv.org/abs/2204.05466v1
- Date: Tue, 12 Apr 2022 01:34:02 GMT
- Title: Independent Natural Policy Gradient Methods for Potential Games:
Finite-time Global Convergence with Entropy Regularization
- Authors: Shicong Cen, Fan Chen, Yuejie Chi
- Abstract summary: We study the finite-time convergence of independent entropy-regularized natural policy gradient (NPG) methods for potential games.
We show that the proposed method converges to the quantal response equilibrium (QRE) at a sublinear rate, which is independent of the size of the action space.
- Score: 28.401280095467015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A major challenge in multi-agent systems is that the system complexity grows
dramatically with the number of agents as well as the size of their action
spaces, which is typical in real world scenarios such as autonomous vehicles,
robotic teams, network routing, etc. It is hence in imminent need to design
decentralized or independent algorithms where the update of each agent is only
based on their local observations without the need of introducing complex
communication/coordination mechanisms.
In this work, we study the finite-time convergence of independent
entropy-regularized natural policy gradient (NPG) methods for potential games,
where the difference in an agent's utility function due to unilateral deviation
matches exactly that of a common potential function. The proposed
entropy-regularized NPG method enables each agent to deploy symmetric,
decentralized, and multiplicative updates according to its own payoff. We show
that the proposed method converges to the quantal response equilibrium (QRE) --
the equilibrium to the entropy-regularized game -- at a sublinear rate, which
is independent of the size of the action space and grows at most sublinearly
with the number of agents. Appealingly, the convergence rate further becomes
independent with the number of agents for the important special case of
identical-interest games, leading to the first method that converges at a
dimension-free rate. Our approach can be used as a smoothing technique to find
an approximate Nash equilibrium (NE) of the unregularized problem without
assuming that stationary policies are isolated.
Related papers
- A Single Online Agent Can Efficiently Learn Mean Field Games [16.00164239349632]
Mean field games (MFGs) are a promising framework for modeling the behavior of large-population systems.
This paper introduces a novel online single-agent model-free learning scheme, which enables a single agent to learn MFNE using online samples.
arXiv Detail & Related papers (2024-05-05T16:38:04Z) - Linear Convergence of Independent Natural Policy Gradient in Games with Entropy Regularization [12.612009339150504]
This work focuses on the entropy-regularized independent natural policy gradient (NPG) algorithm in multi-agent reinforcement learning.
We show that, under sufficient entropy regularization, the dynamics of this system converge at a linear rate to the quantal response equilibrium (QRE)
arXiv Detail & Related papers (2024-05-04T22:48:53Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
A central problem in the theory of multi-agent reinforcement learning (MARL) is to understand what structural conditions and algorithmic principles lead to sample-efficient learning guarantees.
We study this question in a general framework for interactive decision making with multiple agents.
We show that characterizing the statistical complexity for multi-agent decision making is equivalent to characterizing the statistical complexity of single-agent decision making.
arXiv Detail & Related papers (2023-05-01T06:46:22Z) - Faster Last-iterate Convergence of Policy Optimization in Zero-Sum
Markov Games [63.60117916422867]
This paper focuses on the most basic setting of competitive multi-agent RL, namely two-player zero-sum Markov games.
We propose a single-loop policy optimization method with symmetric updates from both agents, where the policy is updated via the entropy-regularized optimistic multiplicative weights update (OMWU) method.
Our convergence results improve upon the best known complexities, and lead to a better understanding of policy optimization in competitive Markov games.
arXiv Detail & Related papers (2022-10-03T16:05:43Z) - Low-rank Optimal Transport: Approximation, Statistics and Debiasing [51.50788603386766]
Low-rank optimal transport (LOT) approach advocated in citescetbon 2021lowrank
LOT is seen as a legitimate contender to entropic regularization when compared on properties of interest.
We target each of these areas in this paper in order to cement the impact of low-rank approaches in computational OT.
arXiv Detail & Related papers (2022-05-24T20:51:37Z) - Multi-Agent MDP Homomorphic Networks [100.74260120972863]
In cooperative multi-agent systems, complex symmetries arise between different configurations of the agents and their local observations.
Existing work on symmetries in single agent reinforcement learning can only be generalized to the fully centralized setting.
This paper introduces Multi-Agent MDP Homomorphic Networks, a class of networks that allows distributed execution using only local information.
arXiv Detail & Related papers (2021-10-09T07:46:25Z) - Dimension-Free Rates for Natural Policy Gradient in Multi-Agent
Reinforcement Learning [22.310861786709538]
We propose a scalable algorithm for cooperative multi-agent reinforcement learning.
We show that our algorithm converges to the globally optimal policy with a dimension-free statistical and computational complexity.
arXiv Detail & Related papers (2021-09-23T23:38:15Z) - Decentralized Local Stochastic Extra-Gradient for Variational
Inequalities [125.62877849447729]
We consider distributed variational inequalities (VIs) on domains with the problem data that is heterogeneous (non-IID) and distributed across many devices.
We make a very general assumption on the computational network that covers the settings of fully decentralized calculations.
We theoretically analyze its convergence rate in the strongly-monotone, monotone, and non-monotone settings.
arXiv Detail & Related papers (2021-06-15T17:45:51Z) - Fast Policy Extragradient Methods for Competitive Games with Entropy
Regularization [40.21627891283402]
This paper investigates the problem of computing the equilibrium of competitive games.
Motivated by the algorithmic role of entropy regularization, we develop provably efficient extragradient methods.
arXiv Detail & Related papers (2021-05-31T17:51:15Z) - Dealing with Non-Stationarity in Multi-Agent Reinforcement Learning via
Trust Region Decomposition [52.06086375833474]
Non-stationarity is one thorny issue in multi-agent reinforcement learning.
We introduce a $delta$-stationarity measurement to explicitly model the stationarity of a policy sequence.
We propose a trust region decomposition network based on message passing to estimate the joint policy divergence.
arXiv Detail & Related papers (2021-02-21T14:46:50Z) - Calibration of Shared Equilibria in General Sum Partially Observable
Markov Games [15.572157454411533]
We consider a general sum partially observable Markov game where agents of different types share a single policy network.
This paper aims at i) formally understanding equilibria reached by such agents, and ii) matching emergent phenomena of such equilibria to real-world targets.
arXiv Detail & Related papers (2020-06-23T15:14:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.