Positive Feature Values Prioritized Hierarchical Redundancy Eliminated
Tree Augmented Naive Bayes Classifier for Hierarchical Feature Spaces
- URL: http://arxiv.org/abs/2204.05668v1
- Date: Tue, 12 Apr 2022 09:53:16 GMT
- Title: Positive Feature Values Prioritized Hierarchical Redundancy Eliminated
Tree Augmented Naive Bayes Classifier for Hierarchical Feature Spaces
- Authors: Cen Wan
- Abstract summary: We propose two new types of positive feature values prioritized hierarchical redundancy eliminated tree augmented naive Bayes classifiers.
The two newly proposed methods are applied to 28 real-world bioinformatics datasets showing better predictive performance than the conventional HRE-TAN classifier.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Hierarchical Redundancy Eliminated Tree Augmented Naive Bayes (HRE-TAN)
classifier is a semi-naive Bayesian model that learns a type of hierarchical
redundancy-free tree-like feature representation to estimate the data
distribution. In this work, we propose two new types of positive feature values
prioritized hierarchical redundancy eliminated tree augmented naive Bayes
classifiers that focus on features bearing positive instance values. The two
newly proposed methods are applied to 28 real-world bioinformatics datasets
showing better predictive performance than the conventional HRE-TAN classifier.
Related papers
- Binary Classification: Is Boosting stronger than Bagging? [5.877778007271621]
We introduce Enhanced Random Forests, an extension of vanilla Random Forests with extra functionalities and adaptive sample and model weighting.
We develop an iterative algorithm for adapting the training sample weights, by favoring the hardest examples, and an approach for finding personalized tree weighting schemes for each new sample.
Our method significantly improves upon regular Random Forests across 15 different binary classification datasets and considerably outperforms other tree methods, including XGBoost.
arXiv Detail & Related papers (2024-10-24T23:22:33Z) - Learning Deep Tree-based Retriever for Efficient Recommendation: Theory and Method [76.31185707649227]
We propose a Deep Tree-based Retriever (DTR) for efficient recommendation.
DTR frames the training task as a softmax-based multi-class classification over tree nodes at the same level.
To mitigate the suboptimality induced by the labeling of non-leaf nodes, we propose a rectification method for the loss function.
arXiv Detail & Related papers (2024-08-21T05:09:53Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
In this paper we offer a new perspective on the well established agglomerative clustering algorithm, focusing on recovery of hierarchical structure.
We recommend a simple variant of the standard algorithm, in which clusters are merged by maximum average dot product and not, for example, by minimum distance or within-cluster variance.
We demonstrate that the tree output by this algorithm provides a bona fide estimate of generative hierarchical structure in data, under a generic probabilistic graphical model.
arXiv Detail & Related papers (2023-05-24T11:05:12Z) - Margin Optimal Classification Trees [0.0]
We present a novel mixed-integer formulation for the Optimal Classification Tree ( OCT) problem.
Our model, denoted as Margin Optimal Classification Tree (MARGOT), exploits the generalization capabilities of Support Vector Machines for binary classification.
To enhance the interpretability of our approach, we analyse two alternative versions of MARGOT, which include feature selection constraints inducing local sparsity of the hyperplanes.
arXiv Detail & Related papers (2022-10-19T14:08:56Z) - Boosting the Discriminant Power of Naive Bayes [17.43377106246301]
We propose a feature augmentation method employing a stack auto-encoder to reduce the noise in the data and boost the discriminant power of naive Bayes.
The experimental results show that the proposed method significantly and consistently outperforms the state-of-the-art naive Bayes classifiers.
arXiv Detail & Related papers (2022-09-20T08:02:54Z) - A Systematic Evaluation of Node Embedding Robustness [77.29026280120277]
We assess the empirical robustness of node embedding models to random and adversarial poisoning attacks.
We compare edge addition, deletion and rewiring strategies computed using network properties as well as node labels.
We found that node classification suffers from higher performance degradation as opposed to network reconstruction.
arXiv Detail & Related papers (2022-09-16T17:20:23Z) - Hierarchical Dependency Constrained Tree Augmented Naive Bayes
Classifiers for Hierarchical Feature Spaces [0.0]
We propose two novel Hierarchical dependency-based Tree Augmented Naive Bayes algorithms, i.e. Hie-TAN and Hie-TAN-Lite.
Hie-TAN successfully obtained better predictive performance than several other hierarchical dependency constrained classification algorithms.
arXiv Detail & Related papers (2022-02-08T19:16:51Z) - Open-Set Recognition: A Good Closed-Set Classifier is All You Need [146.6814176602689]
We show that the ability of a classifier to make the 'none-of-above' decision is highly correlated with its accuracy on the closed-set classes.
We use this correlation to boost the performance of the cross-entropy OSR 'baseline' by improving its closed-set accuracy.
We also construct new benchmarks which better respect the task of detecting semantic novelty.
arXiv Detail & Related papers (2021-10-12T17:58:59Z) - Making CNNs Interpretable by Building Dynamic Sequential Decision
Forests with Top-down Hierarchy Learning [62.82046926149371]
We propose a generic model transfer scheme to make Convlutional Neural Networks (CNNs) interpretable.
We achieve this by building a differentiable decision forest on top of CNNs.
We name the transferred model deep Dynamic Sequential Decision Forest (dDSDF)
arXiv Detail & Related papers (2021-06-05T07:41:18Z) - Deep tree-ensembles for multi-output prediction [0.0]
We propose a novel deep tree-ensemble (DTE) model, where every layer enriches the original feature set with a representation learning component based on tree-embeddings.
We specifically focus on two structured output prediction tasks, namely multi-label classification and multi-target regression.
arXiv Detail & Related papers (2020-11-03T16:25:54Z) - Convolutional Ordinal Regression Forest for Image Ordinal Estimation [52.67784321853814]
We propose a novel ordinal regression approach, termed Convolutional Ordinal Regression Forest or CORF, for image ordinal estimation.
The proposed CORF integrates ordinal regression and differentiable decision trees with a convolutional neural network for obtaining precise and stable global ordinal relationships.
The effectiveness of the proposed CORF is verified on two image ordinal estimation tasks, showing significant improvements and better stability over the state-of-the-art ordinal regression methods.
arXiv Detail & Related papers (2020-08-07T10:41:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.