Self-Supervised Losses for One-Class Textual Anomaly Detection
- URL: http://arxiv.org/abs/2204.05695v1
- Date: Tue, 12 Apr 2022 10:42:47 GMT
- Title: Self-Supervised Losses for One-Class Textual Anomaly Detection
- Authors: Kimberly T. Mai, Toby Davies, Lewis D. Griffin
- Abstract summary: Current deep learning methods for anomaly detection in text rely on supervisory signals in inliers that are difficult to tune.
We study a simpler alternative: fine-tuning Transformers on the inlier data with self-supervised objectives and using the losses as an anomaly score.
Overall, the self-supervision approach outperforms other methods under various anomaly detection scenarios.
- Score: 6.649715954440713
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current deep learning methods for anomaly detection in text rely on
supervisory signals in inliers that may be unobtainable or bespoke
architectures that are difficult to tune. We study a simpler alternative:
fine-tuning Transformers on the inlier data with self-supervised objectives and
using the losses as an anomaly score. Overall, the self-supervision approach
outperforms other methods under various anomaly detection scenarios, improving
the AUROC score on semantic anomalies by 11.6% and on syntactic anomalies by
22.8% on average. Additionally, the optimal objective and resultant learnt
representation depend on the type of downstream anomaly. The separability of
anomalies and inliers signals that a representation is more effective for
detecting semantic anomalies, whilst the presence of narrow feature directions
signals a representation that is effective for detecting syntactic anomalies.
Related papers
- CL-Flow:Strengthening the Normalizing Flows by Contrastive Learning for
Better Anomaly Detection [1.951082473090397]
We propose a self-supervised anomaly detection approach that combines contrastive learning with 2D-Flow.
Compared to mainstream unsupervised approaches, our self-supervised method demonstrates superior detection accuracy, fewer additional model parameters, and faster inference speed.
Our approach showcases new state-of-the-art results, achieving a performance of 99.6% in image-level AUROC on the MVTecAD dataset and 96.8% in image-level AUROC on the BTAD dataset.
arXiv Detail & Related papers (2023-11-12T10:07:03Z) - MSFlow: Multi-Scale Flow-based Framework for Unsupervised Anomaly
Detection [124.52227588930543]
Unsupervised anomaly detection (UAD) attracts a lot of research interest and drives widespread applications.
An inconspicuous yet powerful statistics model, the normalizing flows, is appropriate for anomaly detection and localization in an unsupervised fashion.
We propose a novel Multi-Scale Flow-based framework dubbed MSFlow composed of asymmetrical parallel flows followed by a fusion flow.
Our MSFlow achieves a new state-of-the-art with a detection AUORC score of up to 99.7%, localization AUCROC score of 98.8%, and PRO score of 97.1%.
arXiv Detail & Related papers (2023-08-29T13:38:35Z) - AGAD: Adversarial Generative Anomaly Detection [12.68966318231776]
Anomaly detection suffered from the lack of anomalies due to the diversity of abnormalities and the difficulties of obtaining large-scale anomaly data.
We propose Adversarial Generative Anomaly Detection (AGAD), a self-contrast-based anomaly detection paradigm.
Our method generates pseudo-anomaly data for both supervised and semi-supervised anomaly detection scenarios.
arXiv Detail & Related papers (2023-04-09T10:40:02Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
Anomaly detection is a fundamental yet challenging problem in machine learning.
We propose a novel and powerful framework, dubbed as SLA$2$P, for unsupervised anomaly detection.
arXiv Detail & Related papers (2021-11-25T03:53:43Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Mean-Shifted Contrastive Loss for Anomaly Detection [34.97652735163338]
We propose a new loss function which can overcome failure modes of both center-loss and contrastive-loss methods.
Our improvements yield a new anomaly detection approach, based on $textitMean-Shifted Contrastive Loss$.
Our method achieves state-of-the-art anomaly detection performance on multiple benchmarks including $97.5%$ ROC-AUC.
arXiv Detail & Related papers (2021-06-07T17:58:03Z) - Understanding the Effect of Bias in Deep Anomaly Detection [15.83398707988473]
Anomaly detection presents a unique challenge in machine learning, due to the scarcity of labeled anomaly data.
Recent work attempts to mitigate such problems by augmenting training of deep anomaly detection models with additional labeled anomaly samples.
In this paper, we aim to understand the effect of a biased anomaly set on anomaly detection.
arXiv Detail & Related papers (2021-05-16T03:55:02Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
We consider the problem of anomaly detection with a small set of partially labeled anomaly examples and a large-scale unlabeled dataset.
Existing related methods either exclusively fit the limited anomaly examples that typically do not span the entire set of anomalies, or proceed with unsupervised learning from the unlabeled data.
We propose here instead a deep reinforcement learning-based approach that enables an end-to-end optimization of the detection of both labeled and unlabeled anomalies.
arXiv Detail & Related papers (2020-09-15T03:05:39Z) - Deep Weakly-supervised Anomaly Detection [118.55172352231381]
Pairwise Relation prediction Network (PReNet) learns pairwise relation features and anomaly scores.
PReNet can detect any seen/unseen abnormalities that fit the learned pairwise abnormal patterns.
Empirical results on 12 real-world datasets show that PReNet significantly outperforms nine competing methods in detecting seen and unseen anomalies.
arXiv Detail & Related papers (2019-10-30T00:40:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.