pysamoo: Surrogate-Assisted Multi-Objective Optimization in Python
- URL: http://arxiv.org/abs/2204.05855v1
- Date: Tue, 12 Apr 2022 14:55:57 GMT
- Title: pysamoo: Surrogate-Assisted Multi-Objective Optimization in Python
- Authors: Julian Blank and Kalyanmoy Deb
- Abstract summary: pysamoo is a proposed framework for solving computationally expensive optimization problems.
pysamoo provides multiple optimization methods for handling problems involving time-consuming evaluation functions.
For more information about pysamoo, readers are encouraged to visit: anyoptimization.com/projects/pysamoo.
- Score: 7.8140593450932965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Significant effort has been made to solve computationally expensive
optimization problems in the past two decades, and various optimization methods
incorporating surrogates into optimization have been proposed. However, most
optimization toolboxes do not consist of ready-to-run algorithms for
computationally expensive problems, especially in combination with other key
requirements, such as handling multiple conflicting objectives or constraints.
Thus, the lack of appropriate software packages has become a bottleneck for
solving real-world applications. The proposed framework, pysamoo, addresses
these shortcomings of existing optimization frameworks and provides multiple
optimization methods for handling problems involving time-consuming evaluation
functions. The framework extends the functionalities of pymoo, a popular and
comprehensive toolbox for multi-objective optimization, and incorporates
surrogates to support expensive function evaluations. The framework is
available under the GNU Affero General Public License (AGPL) and is primarily
designed for research purposes. For more information about pysamoo, readers are
encouraged to visit: anyoptimization.com/projects/pysamoo.
Related papers
- Learning Multiple Initial Solutions to Optimization Problems [52.9380464408756]
Sequentially solving similar optimization problems under strict runtime constraints is essential for many applications.
We propose learning to predict emphmultiple diverse initial solutions given parameters that define the problem instance.
We find significant and consistent improvement with our method across all evaluation settings and demonstrate that it efficiently scales with the number of initial solutions required.
arXiv Detail & Related papers (2024-11-04T15:17:19Z) - Iterative or Innovative? A Problem-Oriented Perspective for Code Optimization [81.88668100203913]
Large language models (LLMs) have demonstrated strong capabilities in solving a wide range of programming tasks.
In this paper, we explore code optimization with a focus on performance enhancement, specifically aiming to optimize code for minimal execution time.
arXiv Detail & Related papers (2024-06-17T16:10:10Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Large Language Models as Optimizers [106.52386531624532]
We propose Optimization by PROmpting (OPRO), a simple and effective approach to leverage large language models (LLMs) as prompts.
In each optimization step, the LLM generates new solutions from the prompt that contains previously generated solutions with their values.
We demonstrate that the best prompts optimized by OPRO outperform human-designed prompts by up to 8% on GSM8K, and by up to 50% on Big-Bench Hard tasks.
arXiv Detail & Related papers (2023-09-07T00:07:15Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - Robust expected improvement for Bayesian optimization [1.8130068086063336]
We propose a surrogate modeling and active learning technique called robust expected improvement (REI) that ports adversarial methodology into the BO/GP framework.
We illustrate and draw comparisons to several competitors on benchmark synthetic exercises and real problems of varying complexity.
arXiv Detail & Related papers (2023-02-16T22:34:28Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - A Study of Scalarisation Techniques for Multi-Objective QUBO Solving [0.0]
Quantum and quantum-inspired optimisation algorithms have shown promising performance when applied to academic benchmarks as well as real-world problems.
However, QUBO solvers are single objective solvers. To make them more efficient at solving problems with multiple objectives, a decision on how to convert such multi-objective problems to single-objective problems need to be made.
arXiv Detail & Related papers (2022-10-20T14:54:37Z) - GPSAF: A Generalized Probabilistic Surrogate-Assisted Framework for
Constrained Single- and Multi-objective Optimization [7.8140593450932965]
This paper proposes a generalized probabilistic surrogate-assisted framework (GPSAF)
GPSAF is applicable to a broad category of unconstrained and constrained, single- and multi-objective optimization algorithms.
arXiv Detail & Related papers (2022-04-06T13:22:30Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
We propose a framework for implementing batched data-driven evolutionary multi-objective optimization.
It is so general that any off-the-shelf evolutionary multi-objective optimization algorithms can be applied in a plug-in manner.
Our proposed framework is featured with a faster convergence and a stronger resilience to various PF shapes.
arXiv Detail & Related papers (2021-09-12T23:54:26Z) - pymoo: Multi-objective Optimization in Python [7.8140593450932965]
We have developed pymoo, a multi-objective optimization framework in Python.
We provide a guide to getting started with our framework by demonstrating the implementation of an exemplary constrained multi-objective optimization scenario.
The implementations in our framework are customizable and algorithms can be modified/extended by supplying custom operators.
arXiv Detail & Related papers (2020-01-22T16:04:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.