Robust expected improvement for Bayesian optimization
- URL: http://arxiv.org/abs/2302.08612v2
- Date: Mon, 14 Aug 2023 21:19:08 GMT
- Title: Robust expected improvement for Bayesian optimization
- Authors: Ryan B. Christianson, Robert B. Gramacy
- Abstract summary: We propose a surrogate modeling and active learning technique called robust expected improvement (REI) that ports adversarial methodology into the BO/GP framework.
We illustrate and draw comparisons to several competitors on benchmark synthetic exercises and real problems of varying complexity.
- Score: 1.8130068086063336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian Optimization (BO) links Gaussian Process (GP) surrogates with
sequential design toward optimizing expensive-to-evaluate black-box functions.
Example design heuristics, or so-called acquisition functions, like expected
improvement (EI), balance exploration and exploitation to furnish global
solutions under stringent evaluation budgets. However, they fall short when
solving for robust optima, meaning a preference for solutions in a wider domain
of attraction. Robust solutions are useful when inputs are imprecisely
specified, or where a series of solutions is desired. A common mathematical
programming technique in such settings involves an adversarial objective,
biasing a local solver away from ``sharp'' troughs. Here we propose a surrogate
modeling and active learning technique called robust expected improvement (REI)
that ports adversarial methodology into the BO/GP framework. After describing
the methods, we illustrate and draw comparisons to several competitors on
benchmark synthetic exercises and real problems of varying complexity.
Related papers
- Global Optimization of Gaussian Process Acquisition Functions Using a Piecewise-Linear Kernel Approximation [2.3342885570554652]
We introduce a piecewise approximation for process kernels and a corresponding MIQP representation for acquisition functions.
We empirically demonstrate the framework on synthetic functions, constrained benchmarks, and hyper tuning tasks.
arXiv Detail & Related papers (2024-10-22T10:56:52Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Optimization and Optimizers for Adversarial Robustness [10.279287131070157]
In this paper, we introduce a novel framework that blends a general-purpose constrained-optimization solver with Constraint Folding.
Regarding reliability, PWCF provides solutions with stationarity measures and feasibility tests to assess the solution quality.
We further explore the distinct patterns in the solutions found for solving these problems using various combinations of losses, perturbation models, and optimization algorithms.
arXiv Detail & Related papers (2023-03-23T16:22:59Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - A Study of Scalarisation Techniques for Multi-Objective QUBO Solving [0.0]
Quantum and quantum-inspired optimisation algorithms have shown promising performance when applied to academic benchmarks as well as real-world problems.
However, QUBO solvers are single objective solvers. To make them more efficient at solving problems with multiple objectives, a decision on how to convert such multi-objective problems to single-objective problems need to be made.
arXiv Detail & Related papers (2022-10-20T14:54:37Z) - Uncertainty-Aware Search Framework for Multi-Objective Bayesian
Optimization [40.40632890861706]
We consider the problem of multi-objective (MO) blackbox optimization using expensive function evaluations.
We propose a novel uncertainty-aware search framework referred to as USeMO to efficiently select the sequence of inputs for evaluation.
arXiv Detail & Related papers (2022-04-12T16:50:48Z) - pysamoo: Surrogate-Assisted Multi-Objective Optimization in Python [7.8140593450932965]
pysamoo is a proposed framework for solving computationally expensive optimization problems.
pysamoo provides multiple optimization methods for handling problems involving time-consuming evaluation functions.
For more information about pysamoo, readers are encouraged to visit: anyoptimization.com/projects/pysamoo.
arXiv Detail & Related papers (2022-04-12T14:55:57Z) - Optimizer Amalgamation [124.33523126363728]
We are motivated to study a new problem named Amalgamation: how can we best combine a pool of "teacher" amalgamations into a single "student" that can have stronger problem-specific performance?
First, we define three differentiable mechanisms to amalgamate a pool of analyticals by gradient descent.
In order to reduce variance of the process, we also explore methods to stabilize the process by perturbing the target.
arXiv Detail & Related papers (2022-03-12T16:07:57Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.