論文の概要: A Review of Machine Learning Methods Applied to Structural Dynamics and
Vibroacoustic
- arxiv url: http://arxiv.org/abs/2204.06362v2
- Date: Thu, 20 Jul 2023 15:48:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-21 19:17:41.566255
- Title: A Review of Machine Learning Methods Applied to Structural Dynamics and
Vibroacoustic
- Title(参考訳): 構造力学とビブロア音響に応用した機械学習手法の検討
- Authors: Barbara Cunha (LTDS), Christophe Droz (I4S), Abdelmalek Zine (ICJ),
St\'ephane Foulard, Mohamed Ichchou (LTDS)
- Abstract要約: Vibroacoustic(SD&V)の主要な3つのアプリケーションが機械学習(ML)を活用している。
構造的健康モニタリングでは、ML検出と予後が安全な操作とメンテナンススケジュールの最適化につながる。
システムの識別と制御設計は、アクティブノイズ制御およびアクティブ振動制御におけるML技術によって活用される。
いわゆるMLベースのサロゲートモデルは、コストのかかるシミュレーションに代わる高速な代替手段を提供し、堅牢で最適化された製品設計を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The use of Machine Learning (ML) has rapidly spread across several fields,
having encountered many applications in Structural Dynamics and Vibroacoustic
(SD\&V). The increasing capabilities of ML to unveil insights from data, driven
by unprecedented data availability, algorithms advances and computational
power, enhance decision making, uncertainty handling, patterns recognition and
real-time assessments. Three main applications in SD\&V have taken advantage of
these benefits. In Structural Health Monitoring, ML detection and prognosis
lead to safe operation and optimized maintenance schedules. System
identification and control design are leveraged by ML techniques in Active
Noise Control and Active Vibration Control. Finally, the so-called ML-based
surrogate models provide fast alternatives to costly simulations, enabling
robust and optimized product design. Despite the many works in the area, they
have not been reviewed and analyzed. Therefore, to keep track and understand
this ongoing integration of fields, this paper presents a survey of ML
applications in SD\&V analyses, shedding light on the current state of
implementation and emerging opportunities. The main methodologies, advantages,
limitations, and recommendations based on scientific knowledge were identified
for each of the three applications. Moreover, the paper considers the role of
Digital Twins and Physics Guided ML to overcome current challenges and power
future research progress. As a result, the survey provides a broad overview of
the present landscape of ML applied in SD\&V and guides the reader to an
advanced understanding of progress and prospects in the field.
- Abstract(参考訳): 機械学習(ml)の使用は、いくつかの分野に急速に広がり、構造力学や振動音響学(sd\&v)の多くの応用に遭遇している。
前例のないデータ可用性、アルゴリズムの進歩と計算能力、意思決定の強化、不確実性処理、パターン認識、リアルタイム評価によって駆動される、データからの洞察を明らかにするmlの能力の増大。
SD\&Vの主要な3つのアプリケーションがこれらの利点を生かしている。
構造的健康モニタリングでは、ML検出と予後が安全な操作とメンテナンススケジュールの最適化につながる。
システムの識別と制御設計は、アクティブノイズ制御およびアクティブ振動制御におけるML技術によって活用される。
最後に、MLベースのサロゲートモデルはコストのかかるシミュレーションの高速な代替手段を提供し、堅牢で最適化された製品設計を可能にします。
この地域の多くの作品にもかかわらず、レビューや分析は行われていない。
そこで本稿では,これらの分野の統合を追跡し理解するために,sd\&v分析におけるml応用に関する調査を行い,実装の現状と新たな機会について考察する。
これら3つの応用ごとに,科学的知識に基づく方法論,利点,限界,推奨事項が同定された。
さらに,Digital Twins と Physics Guided ML の役割を,現在の課題を克服し,今後の研究の進展をパワーアップするために検討する。
その結果、SD\&Vで適用されたMLの現在の展望を概観し、その分野の進歩と展望について、読者に高度な理解を促すことができた。
関連論文リスト
- Towards Trustworthy Machine Learning in Production: An Overview of the Robustness in MLOps Approach [0.0]
近年、AI研究者や実践家は、信頼性と信頼性のある意思決定を行うシステムを構築するための原則とガイドラインを導入している。
実際には、システムが運用され、実際の環境で継続的に進化し、運用するためにデプロイされる必要がある場合に、根本的な課題が発生する。
この課題に対処するため、MLOps(Machine Learning Operations)は、デプロイメントにおけるMLソリューションを標準化するための潜在的なレシピとして登場した。
論文 参考訳(メタデータ) (2024-10-28T09:34:08Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
本稿では、基本概念、従来の手法、ベンチマークデータセットを紹介し、CFDを改善する上で機械学習が果たす様々な役割について検討する。
我々は,空気力学,燃焼,大気・海洋科学,生物流体,プラズマ,記号回帰,秩序の低減など,CFDにおけるMLの現実的な応用を強調した。
シミュレーションの精度を向上し、計算時間を短縮し、流体力学のより複雑な解析を可能にすることにより、MLはCFD研究を大きく変革する可能性があるという結論を導いた。
論文 参考訳(メタデータ) (2024-08-22T07:33:11Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Towards Efficient Generative Large Language Model Serving: A Survey from
Algorithms to Systems [14.355768064425598]
生成型大規模言語モデル(LLM)が最前線に立ち、データとのインタラクション方法に革命をもたらします。
しかし、これらのモデルをデプロイする際の計算強度とメモリ消費は、効率性の観点から大きな課題を呈している。
本研究は,機械学習システム(MLSys)研究の観点から,効率的なLCM提供手法の必要性について考察する。
論文 参考訳(メタデータ) (2023-12-23T11:57:53Z) - STPA for Learning-Enabled Systems: A Survey and A New Practice [12.665507596261266]
システム理論プロセス分析(System Theoretic Process Analysis、STPA)は、輸送、エネルギー、防衛を含む多くの産業セクターで使用されているハザード分析の体系的なアプローチである。
安全クリティカルシステムにおける機械学習(ML)の利用傾向は、学習可能システム(LES)へのSTPAの拡張の必要性につながっている。
我々は,31論文の体系的な調査を行い,これらを5つの視点から要約する(関心,研究対象,修正,デリバティブ,プロセスのモデル化)。
私たちはDeepSTPAを紹介します。DeepSTPAは、現状から欠落している2つの側面から、DeepSTPAを強化します。
論文 参考訳(メタデータ) (2023-02-21T10:43:51Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
自動運転車のような安全クリティカルなアプリケーションにおける機械学習アルゴリズムのオープンワールド展開は、さまざまなML脆弱性に対処する必要がある。
一般化エラーを低減し、ドメイン適応を実現し、外乱例や敵攻撃を検出するための新しいモデルと訓練技術。
我々の組織は、MLアルゴリズムの信頼性を異なる側面から向上するために、最先端のML技術を安全戦略にマッピングする。
論文 参考訳(メタデータ) (2021-06-09T05:56:42Z) - Characterizing and Detecting Mismatch in Machine-Learning-Enabled
Systems [1.4695979686066065]
機械学習システムの開発と展開は依然として課題だ。
本論文では,エンドツーエンドのML対応システム開発における知見とその意義について報告する。
論文 参考訳(メタデータ) (2021-03-25T19:40:29Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
機械学習はデータに対する深い洞察を与え、マシンが高品質な予測を行うことを可能にする。
ほとんどの高度な機械学習アプローチは、大規模なデータを扱う場合の膨大な時間コストに悩まされる。
大規模機械学習は、ビッグデータからパターンを、同等のパフォーマンスで効率的に学習することを目的としている。
論文 参考訳(メタデータ) (2020-08-10T06:07:52Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。