論文の概要: A practical guide to machine learning interatomic potentials -- Status and future
- arxiv url: http://arxiv.org/abs/2503.09814v1
- Date: Wed, 12 Mar 2025 20:24:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:51:08.340242
- Title: A practical guide to machine learning interatomic potentials -- Status and future
- Title(参考訳): 機械学習の原子間ポテンシャルに関する実践的ガイド --現状と将来
- Authors: Ryan Jacobs, Dane Morgan, Siamak Attarian, Jun Meng, Chen Shen, Zhenghao Wu, Clare Yijia Xie, Julia H. Yang, Nongnuch Artrith, Ben Blaiszik, Gerbrand Ceder, Kamal Choudhary, Gabor Csanyi, Ekin Dogus Cubuk, Bowen Deng, Ralf Drautz, Xiang Fu, Jonathan Godwin, Vasant Honavar, Olexandr Isayev, Anders Johansson, Boris Kozinsky, Stefano Martiniani, Shyue Ping Ong, Igor Poltavsky, KJ Schmidt, So Takamoto, Aidan Thompson, Julia Westermayr, Brandon M. Wood,
- Abstract要約: 本稿では機械学習の原子間ポテンシャル(MLIP)に関する幅広い話題について概説する。
これには、最新の進歩、機能、欠点、そしてこの初期段階のMLIPの潜在的な応用の概要が含まれている。
- 参考スコア(独自算出の注目度): 8.0305939931363
- License:
- Abstract: The rapid development and large body of literature on machine learning interatomic potentials (MLIPs) can make it difficult to know how to proceed for researchers who are not experts but wish to use these tools. The spirit of this review is to help such researchers by serving as a practical, accessible guide to the state-of-the-art in MLIPs. This review paper covers a broad range of topics related to MLIPs, including (i) central aspects of how and why MLIPs are enablers of many exciting advancements in molecular modeling, (ii) the main underpinnings of different types of MLIPs, including their basic structure and formalism, (iii) the potentially transformative impact of universal MLIPs for both organic and inorganic systems, including an overview of the most recent advances, capabilities, downsides, and potential applications of this nascent class of MLIPs, (iv) a practical guide for estimating and understanding the execution speed of MLIPs, including guidance for users based on hardware availability, type of MLIP used, and prospective simulation size and time, (v) a manual for what MLIP a user should choose for a given application by considering hardware resources, speed requirements, energy and force accuracy requirements, as well as guidance for choosing pre-trained potentials or fitting a new potential from scratch, (vi) discussion around MLIP infrastructure, including sources of training data, pre-trained potentials, and hardware resources for training, (vii) summary of some key limitations of present MLIPs and current approaches to mitigate such limitations, including methods of including long-range interactions, handling magnetic systems, and treatment of excited states, and finally (viii) we finish with some more speculative thoughts on what the future holds for the development and application of MLIPs over the next 3-10+ years.
- Abstract(参考訳): 機械学習の原子間ポテンシャル(MLIP)に関する急速な発展と大きな文献は、専門家ではないがこれらのツールを使いたいと考える研究者にとって、どのように進むべきかを知るのを難しくする。
このレビューの精神は、MLIPの最先端への実践的でアクセスしやすいガイドとして、そのような研究者を支援することである。
本稿では,MLIPに関する幅広い話題について紹介する。
i) MLIPが分子モデリングにおける多くのエキサイティングな進歩の要因となる理由と理由の中心的側面。
(II)MLIPの基本構造や形式など、異なるタイプのMLIPの主な基盤となるもの。
三 有機系及び無機系のユニバーサルMLIPの潜在的変革的影響について、最新の進歩、能力、欠点、及びこの初期のMLIPの潜在的な応用の概要を含む。
(4)ハードウェア利用率に基づくユーザ向けガイダンス,使用するMLIPの種類,予測シミュレーションサイズと時間など,MLIPの実行速度を推定・理解するための実用的なガイド。
(v) ハードウェアリソース、速度要件、エネルギー及び力の精度要件を考慮し、事前学習した電位を選択したり、新しい電位をゼロから適合させたりすることで、ユーザが所定のアプリケーションに対して選択すべきMLIPのマニュアル。
(vi)トレーニングデータ、トレーニング済みポテンシャル、トレーニングのためのハードウェアリソースなど、MLIPインフラストラクチャに関する議論。
(vii)現在のMLIPのいくつかの重要な制限の要約と、このような制限を緩和するための現在のアプローチ、例えば、長距離相互作用、磁気システムの扱い、励起状態の処理、そして最後に、
(viii)今後3~10年以上のMLIPの開発と応用について、より投機的な考察を仕上げる。
関連論文リスト
- Energy & Force Regression on DFT Trajectories is Not Enough for Universal Machine Learning Interatomic Potentials [8.254607304215451]
MLIP(Universal Machine Learning Interactomic Potentials)は、材料発見のための高速化されたシミュレーションを可能にする。
MLIPは様々な材料に対して大規模分子動力学(MD)シミュレーションを確実かつ正確に行うことができない。
論文 参考訳(メタデータ) (2025-02-05T23:04:21Z) - Towards Trustworthy Machine Learning in Production: An Overview of the Robustness in MLOps Approach [0.0]
近年、AI研究者や実践家は、信頼性と信頼性のある意思決定を行うシステムを構築するための原則とガイドラインを導入している。
実際には、システムが運用され、実際の環境で継続的に進化し、運用するためにデプロイされる必要がある場合に、根本的な課題が発生する。
この課題に対処するため、MLOps(Machine Learning Operations)は、デプロイメントにおけるMLソリューションを標準化するための潜在的なレシピとして登場した。
論文 参考訳(メタデータ) (2024-10-28T09:34:08Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Machine Learning Applications to Computational Plasma Physics and Reduced-Order Plasma Modeling: A Perspective [0.0]
このパースペクティブは、流体力学における機械学習の進歩を計算プラズマ物理学に転送するためのロードマップを概説することを目的としている。
まず、MLアルゴリズムの様々なカテゴリや、MLの助けを借りて解決できるさまざまなタイプの問題など、MLの基本的な側面について議論する。
次に,計算流体力学におけるMLの使用例について述べる。
論文 参考訳(メタデータ) (2024-09-04T00:35:55Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
本稿では、基本概念、従来の手法、ベンチマークデータセットを紹介し、CFDを改善する上で機械学習が果たす様々な役割について検討する。
我々は,空気力学,燃焼,大気・海洋科学,生物流体,プラズマ,記号回帰,秩序の低減など,CFDにおけるMLの現実的な応用を強調した。
シミュレーションの精度を向上し、計算時間を短縮し、流体力学のより複雑な解析を可能にすることにより、MLはCFD研究を大きく変革する可能性があるという結論を導いた。
論文 参考訳(メタデータ) (2024-08-22T07:33:11Z) - Federated Fine-Tuning of LLMs on the Very Edge: The Good, the Bad, the Ugly [62.473245910234304]
本稿では,最新のエッジコンピューティングシステムにおいて,Large Language Modelsをどのように導入できるかを,ハードウェア中心のアプローチで検討する。
マイクロレベルのハードウェアベンチマークを行い、FLOPモデルと最先端のデータセンターGPUを比較し、現実的な条件下でのネットワーク利用について検討する。
論文 参考訳(メタデータ) (2023-10-04T20:27:20Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
人工知能,特に深層学習(DL)の最近の進歩を概観する。
ハイブリッドおよび純粋機械学習(ML)の手法について論じる。
AIの歴史と限界は、特に古典の誤解や誤解を指摘し、議論され、議論される。
論文 参考訳(メタデータ) (2022-12-18T02:03:00Z) - A Review of Machine Learning Methods Applied to Structural Dynamics and
Vibroacoustic [0.0]
Vibroacoustic(SD&V)の主要な3つのアプリケーションが機械学習(ML)を活用している。
構造的健康モニタリングでは、ML検出と予後が安全な操作とメンテナンススケジュールの最適化につながる。
システムの識別と制御設計は、アクティブノイズ制御およびアクティブ振動制御におけるML技術によって活用される。
いわゆるMLベースのサロゲートモデルは、コストのかかるシミュレーションに代わる高速な代替手段を提供し、堅牢で最適化された製品設計を可能にする。
論文 参考訳(メタデータ) (2022-04-13T13:16:21Z) - Machine learning enabling high-throughput and remote operations at
large-scale user facilities [0.0]
機械学習(ML)手法は、大規模なデータセットをリアルタイムで処理し、解釈するために定期的に開発されている。
我々は、National Synchrotron Light Source II (NSLS-II)において、複数のビームラインでのオンザフライ解析のための様々なアーチティパルMLモデルを実証した。
論文 参考訳(メタデータ) (2022-01-09T17:43:03Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
機械学習はデータに対する深い洞察を与え、マシンが高品質な予測を行うことを可能にする。
ほとんどの高度な機械学習アプローチは、大規模なデータを扱う場合の膨大な時間コストに悩まされる。
大規模機械学習は、ビッグデータからパターンを、同等のパフォーマンスで効率的に学習することを目的としている。
論文 参考訳(メタデータ) (2020-08-10T06:07:52Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。