論文の概要: Population Diversity Leads to Short Running Times of Lexicase Selection
- arxiv url: http://arxiv.org/abs/2204.06461v1
- Date: Wed, 13 Apr 2022 15:33:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-17 02:44:06.749477
- Title: Population Diversity Leads to Short Running Times of Lexicase Selection
- Title(参考訳): 人口の多様性が急激なレキシケース選択に繋がる
- Authors: Thomas Helmuth, Johannes Lengler, William La Cava
- Abstract要約: 我々は高い多様性がレキシケース選択の低走行時間O(N + C)につながることを証明した。
いくつかのプログラム合成問題に対して,レキシケース選択の下で進化した遺伝的プログラミング個体群が多様であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper we investigate why the running time of lexicase parent
selection is empirically much lower than its worst-case bound of O(N*C). We
define a measure of population diversity and prove that high diversity leads to
low running times O(N + C) of lexicase selection. We then show empirically that
genetic programming populations evolved under lexicase selection are diverse
for several program synthesis problems, and explore the resulting differences
in running time bounds.
- Abstract(参考訳): 本稿では,レキシケース親選択の実行時間が,最悪のO(N*C)境界よりも経験的に低い理由を考察する。
集団の多様性の尺度を定義し、高い多様性がレキシケース選択の低走行時間O(N + C)につながることを示す。
そして,いくつかのプログラム合成問題に対して,レキシケース選択の下で進化した遺伝的プログラミング個体群が多様性があることを実証的に示す。
関連論文リスト
- Scaling Data Diversity for Fine-Tuning Language Models in Human Alignment [84.32768080422349]
人間の好みの調整は、大きな言語モデルが誤解を招くか有害なコンテンツを生成するのを防ぐ。
本研究では, 微調整後のLLMの最終性能と線形相関を示唆し, 即時多様性の新たな定式化を提案する。
論文 参考訳(メタデータ) (2024-03-17T07:08:55Z) - Evaluating Genetic Algorithms through the Approximability Hierarchy [55.938644481736446]
本稿では,問題の近似クラスに依存する遺伝的アルゴリズムの有用性を解析する。
特に, 遺伝的アルゴリズムは階層の最も悲観的なクラスに特に有用であることを示す。
論文 参考訳(メタデータ) (2024-02-01T09:18:34Z) - DALex: Lexicase-like Selection via Diverse Aggregation [6.394522608656896]
DALex(Diversely Aggregated Lexicase)は,レキシケース選択とその緩和された変種に対して,大幅な高速化を実現することを示す。
プログラム合成, 深層学習, 記号回帰, 学習システムの結果から, DALexは語彙選択とその緩和された変種に対して, 大幅な高速化を実現することが示された。
論文 参考訳(メタデータ) (2024-01-23T01:20:15Z) - Invariant Causal Prediction with Local Models [52.161513027831646]
観測データから対象変数の因果親を特定するタスクについて検討する。
L-ICP(textbfL$ocalized $textbfI$nvariant $textbfCa$usal $textbfP$rediction)と呼ばれる実用的手法を導入する。
論文 参考訳(メタデータ) (2024-01-10T15:34:42Z) - Probabilistic Lexicase Selection [6.177959045971966]
本稿では,レキシケード選択の確率分布を効率的に近似する新しい親選択アルゴリズムである確率論的レキシケード選択(プレキシケード選択)を導入する。
提案手法は,セマンティック・アウェア選択法として優れた問題解決能力を示すだけでなく,選択プロセスの確率的表現の利点も示している。
論文 参考訳(メタデータ) (2023-05-19T13:57:04Z) - Calculating lexicase selection probabilities is NP-Hard [0.0]
lex-prob というこの問題が NP-Hard であることを示す。
この証明は、よく知られたNP-Complete問題であるSATを、時間内にlex-probに還元することで達成する。
論文 参考訳(メタデータ) (2023-01-17T06:51:44Z) - Group Testing with Non-identical Infection Probabilities [59.96266198512243]
そこで我々は,集合形成法を用いた適応型グループテストアルゴリズムを開発した。
提案アルゴリズムは, エントロピー下界に近い性能を示す。
論文 参考訳(メタデータ) (2021-08-27T17:53:25Z) - An Exploration of Exploration: Measuring the ability of lexicase
selection to find obscure pathways to optimality [62.997667081978825]
本稿では,探索空間探索のための選択スキームの容量を診断する探索診断手法を提案する。
我々はレキシケースの選択がトーナメントの選択を外見することを確認した。
我々は,レキシケースのエリート性をエプシロンレキシケースで緩和することで,探索をさらに改善できることを見出した。
論文 参考訳(メタデータ) (2021-07-20T20:43:06Z) - Problem-solving benefits of down-sampled lexicase selection [0.20305676256390928]
ダウンサンプルのレキシケース選択の主な利点は、進化過程が同じ計算予算内でより多くの個人を調べることができるという事実から来ています。
しかし、ダウンサンプリングが役立つ理由は、まだ完全には理解されていない。
論文 参考訳(メタデータ) (2021-06-10T23:42:09Z) - Deep Unsupervised Identification of Selected SNPs between Adapted
Populations on Pool-seq Data [4.94950858749529]
SNPを同定する非監視パイプラインを提案する。
監視された差別者CNNを訓練し、異なる人口からのアライメントを区別します。
我々の解が統計的結果を拡張できることが示される。
論文 参考訳(メタデータ) (2020-12-28T22:28:44Z) - Multi-characteristic Subject Selection from Biased Datasets [79.82881947891589]
本稿では,異なる集団群に対する最良サンプリング分数を求める制約付き最適化に基づく手法を提案する。
その結果,提案手法がすべての問題変化のベースラインを最大90%上回っていることが示された。
論文 参考訳(メタデータ) (2020-12-18T15:55:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。