論文の概要: Improving adaptability to new environments and removing catastrophic
forgetting in Reinforcement Learning by using an eco-system of agents
- arxiv url: http://arxiv.org/abs/2204.06550v1
- Date: Wed, 13 Apr 2022 17:52:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-14 13:59:58.691626
- Title: Improving adaptability to new environments and removing catastrophic
forgetting in Reinforcement Learning by using an eco-system of agents
- Title(参考訳): エージェントのエコシステムを用いた強化学習における新しい環境適応性の向上と破滅的忘れの除去
- Authors: Olivier Moulin, Vincent Francois-Lavet, Paul Elbers, Mark Hoogendoorn
- Abstract要約: 強化学習(RL)エージェントを目に見えない環境に適応させることは、トレーニング環境に典型的な過度な適合のために難しい課題である。
破滅的な忘れ込みの危険性があり、これまで見られた環境のパフォーマンスが著しく妨げられている。
本稿では,エージェントのエコシステムを利用して双方の懸念に対処する新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 3.5786621294068373
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adapting a Reinforcement Learning (RL) agent to an unseen environment is a
difficult task due to typical over-fitting on the training environment. RL
agents are often capable of solving environments very close to the trained
environment, but when environments become substantially different, their
performance quickly drops. When agents are retrained on new environments, a
second issue arises: there is a risk of catastrophic forgetting, where the
performance on previously seen environments is seriously hampered. This paper
proposes a novel approach that exploits an ecosystem of agents to address both
concerns. Hereby, the (limited) adaptive power of individual agents is
harvested to build a highly adaptive ecosystem. This allows to transfer part of
the workload from learning to inference. An evaluation of the approach on two
distinct distributions of environments shows that our approach outperforms
state-of-the-art techniques in terms of adaptability/generalization as well as
avoids catastrophic forgetting.
- Abstract(参考訳): 強化学習(RL)エージェントを目に見えない環境に適応させることは、トレーニング環境に典型的な過度な適合のために難しい課題である。
RLエージェントは、しばしば訓練された環境に非常に近い環境を解くことができるが、環境が著しく異なると、その性能は急速に低下する。
エージェントが新しい環境で再訓練されるとき、第二の問題が生じる: 破滅的な忘れ込みのリスクがあり、これまで見られた環境のパフォーマンスが著しく妨げられている。
本稿では,エージェントのエコシステムを利用して双方の懸念に対処する新しいアプローチを提案する。
これにより、個々のエージェントの(限定的な)適応的なパワーを収穫し、高度に適応的なエコシステムを構築する。
これにより、ワークロードの一部を学習から推論に転送することができる。
2つの異なる環境分布に対するアプローチの評価は、我々のアプローチが適応性と一般化の観点から最先端技術よりも優れており、破滅的な忘れを回避していることを示している。
関連論文リスト
- Survival of the Fittest: Evolutionary Adaptation of Policies for Environmental Shifts [0.15889427269227555]
進化ゲーム理論(EGT)にインスパイアされた適応的再学習アルゴリズムを開発する。
ERPOは、ポリシー適応の高速化、平均報酬の向上、およびポリシー適応の計算コストの削減を示す。
論文 参考訳(メタデータ) (2024-10-22T09:29:53Z) - No Regrets: Investigating and Improving Regret Approximations for Curriculum Discovery [53.08822154199948]
非教師なし環境設計(UED)手法は、エージェントがイン・オブ・アウト・ディストリビューションタスクに対して堅牢になることを約束する適応的カリキュラムとして近年注目を集めている。
本研究は,既存のUEDメソッドがいかにトレーニング環境を選択するかを検討する。
本研究では,学習性の高いシナリオを直接訓練する手法を開発した。
論文 参考訳(メタデータ) (2024-08-27T14:31:54Z) - Generalization through Diversity: Improving Unsupervised Environment
Design [8.961693126230452]
本稿では,環境設計に関連する新しい距離尺度に基づいて,多様な環境を適応的に識別する手法を提案する。
我々は,教師なし環境設計における複数の主要なアプローチと比較して,提案手法の汎用性と有効性を実証的に実証した。
論文 参考訳(メタデータ) (2023-01-19T11:55:47Z) - AACC: Asymmetric Actor-Critic in Contextual Reinforcement Learning [13.167123175701802]
本稿では,強化学習(RL)における環境動態の変化に適応するタスクを定式化する。
次に、このような一般化タスクに対処するエンドツーエンドのアクター批判手法として、コンテキストRL(AACC)における非対称アクター批判を提案する。
シミュレーション環境において,既存のベースラインに対するAACCの性能改善を実験的に示す。
論文 参考訳(メタデータ) (2022-08-03T22:52:26Z) - Emergent Complexity and Zero-shot Transfer via Unsupervised Environment
Design [121.73425076217471]
本研究では,未知のパラメータを持つ環境を提供するUnsupervised Environment Design (UED)を提案する。
プロタゴニスト・アンタゴニストによるレグレト環境デザイン(PAIRED)と呼ぶ。
実験により, PAIREDは複雑な環境の自然なカリキュラムを生産し, PAIREDエージェントは, 高度に新規な環境での試験において, 高いゼロショット転送性能が得られることを示した。
論文 参考訳(メタデータ) (2020-12-03T17:37:01Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
都市運転のような現実の安全クリティカルな目標設定における強化学習(RL)は危険である。
非安全クリティカルな「ソース」環境でエージェントが最初に訓練する「安全クリティカル適応」タスクセットを提案する。
多様な環境における事前経験がリスクを見積もるためにエージェントに装備するという直感に基づくソリューションアプローチであるCARLを提案する。
論文 参考訳(メタデータ) (2020-08-15T01:40:59Z) - Self-Supervised Policy Adaptation during Deployment [98.25486842109936]
セルフスーパービジョンでは、報酬を使わずに、デプロイ後のトレーニングを継続することができる。
DeepMind Control スイートと ViZDoom の様々なシミュレーション環境で実証評価を行う。
提案手法は,36環境中31環境での一般化を向上し,多くの環境においてドメインランダム化に優れる。
論文 参考訳(メタデータ) (2020-07-08T17:56:27Z) - Environment Shaping in Reinforcement Learning using State Abstraction [63.444831173608605]
状態抽象化を用いた環境形成の新しい枠組みを提案する。
私たちのキーとなるアイデアは、ノイズの多い信号で環境の大きな状態空間を抽象空間に圧縮することです。
エージェントの方針は, 形状の環境において学習し, 元の環境において, ほぼ最適動作を保っていることを示す。
論文 参考訳(メタデータ) (2020-06-23T17:00:22Z) - Ecological Reinforcement Learning [76.9893572776141]
このような条件下での学習を容易にする環境特性について検討する。
環境の特性が強化学習エージェントのパフォーマンスにどのように影響するかを理解することは、学習を魅力的にする方法でタスクを構造化するのに役立ちます。
論文 参考訳(メタデータ) (2020-06-22T17:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。