論文の概要: Efficient Adaptation of Reinforcement Learning Agents to Sudden Environmental Change
- arxiv url: http://arxiv.org/abs/2505.10330v1
- Date: Thu, 15 May 2025 14:19:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 22:29:06.35366
- Title: Efficient Adaptation of Reinforcement Learning Agents to Sudden Environmental Change
- Title(参考訳): 環境変化に対する強化学習エージェントの効果的な適応
- Authors: Jonathan Clifford Balloch,
- Abstract要約: 現実の自律的な意思決定システムは、時間とともに変化する環境で運用されなければならない。
深い強化学習は、静止環境で最適なポリシーを学習する素晴らしい能力を示している。
この論文は、効率的なオンライン適応には2つの重要な機能が必要であることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world autonomous decision-making systems, from robots to recommendation engines, must operate in environments that change over time. While deep reinforcement learning (RL) has shown an impressive ability to learn optimal policies in stationary environments, most methods are data intensive and assume a world that does not change between training and test time. As a result, conventional RL methods struggle to adapt when conditions change. This poses a fundamental challenge: how can RL agents efficiently adapt their behavior when encountering novel environmental changes during deployment without catastrophically forgetting useful prior knowledge? This dissertation demonstrates that efficient online adaptation requires two key capabilities: (1) prioritized exploration and sampling strategies that help identify and learn from relevant experiences, and (2) selective preservation of prior knowledge through structured representations that can be updated without disruption to reusable components.
- Abstract(参考訳): ロボットからレコメンデーションエンジンまで、現実の自律的な意思決定システムは、時間とともに変化する環境で運用されなければならない。
深層強化学習(RL)は静止環境で最適な政策を学習する素晴らしい能力を示してきたが、ほとんどの手法はデータ集約であり、トレーニングとテスト時間の間に変化しない世界を想定している。
その結果、従来のRL法は条件が変わると適応に苦慮する。
RLエージェントは、破壊的に有用な事前知識を忘れることなく、展開中に新しい環境変化に遭遇する際の行動に効率的に適応できるのか?
この論文は, 効率的なオンライン適応には2つの重要な機能が必要であることを示す。(1) 関連する経験を識別し学習する探索とサンプリング戦略の優先順位付け, (2) 再利用可能なコンポーネントに分解することなく更新可能な構造化された表現による事前知識の選択的保存。
関連論文リスト
- Training a Generally Curious Agent [86.84089201249104]
PAPRIKAは,言語モデルによる一般的な意思決定機能の開発を可能にする微調整手法である。
PAPRIKAで微調整されたモデルは、学習した意思決定能力を全く見えないタスクに効果的に移行できることを示す実験結果が得られた。
これらの結果は、新しいシーケンシャルな意思決定問題を自律的に解決できるAIシステムへの有望な道のりを示唆している。
論文 参考訳(メタデータ) (2025-02-24T18:56:58Z) - Mind the Gap: Towards Generalizable Autonomous Penetration Testing via Domain Randomization and Meta-Reinforcement Learning [15.619925926862235]
GAPは汎用的な自律型ペンテスティングフレームワークである。
現実的な環境で効率的な政策トレーニングを実現することを目的としている。
また、あるインスタンスから他のケースについて推論できるエージェントを訓練する。
論文 参考訳(メタデータ) (2024-12-05T11:24:27Z) - Learning fast changing slow in spiking neural networks [3.069335774032178]
強化学習(Reinforcement Learning, RL)は、実生活問題に適用する際の課題である。
生涯学習機械は可塑性安定パラドックスを解決しなければならない。
新たな知識の獲得と安定性の維持のバランスを取ることは、人工エージェントにとって不可欠である。
論文 参考訳(メタデータ) (2024-01-25T12:03:10Z) - Don't Start From Scratch: Leveraging Prior Data to Automate Robotic
Reinforcement Learning [70.70104870417784]
強化学習(RL)アルゴリズムは、ロボットシステムの自律的なスキル獲得を可能にするという約束を持っている。
現実のロボットRLは、通常、環境をリセットするためにデータ収集と頻繁な人間の介入を必要とする。
本研究では,従来のタスクから収集した多様なオフラインデータセットを効果的に活用することで,これらの課題にどのように対処できるかを検討する。
論文 参考訳(メタデータ) (2022-07-11T08:31:22Z) - Improving adaptability to new environments and removing catastrophic
forgetting in Reinforcement Learning by using an eco-system of agents [3.5786621294068373]
強化学習(RL)エージェントを目に見えない環境に適応させることは、トレーニング環境に典型的な過度な適合のために難しい課題である。
破滅的な忘れ込みの危険性があり、これまで見られた環境のパフォーマンスが著しく妨げられている。
本稿では,エージェントのエコシステムを利用して双方の懸念に対処する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-04-13T17:52:54Z) - Transfer learning with causal counterfactual reasoning in Decision
Transformers [5.672132510411465]
本研究では,環境力学の変化による伝達学習の課題について考察する。
具体的には、決定変換器アーキテクチャを用いて、新しい環境に対する新しいポリシーを精査する。
このメカニズムは,報奨のほとんどを維持しつつ,目標環境に対するポリシーのブートストラップを成功させることができることを示す。
論文 参考訳(メタデータ) (2021-10-27T11:23:27Z) - One Solution is Not All You Need: Few-Shot Extrapolation via Structured
MaxEnt RL [142.36621929739707]
課題を達成するために多様な行動を学ぶことは、様々な環境に一般化する行動を引き起こす可能性があることを示す。
トレーニング中の1つの環境でタスクの複数のソリューションを識別することにより、我々のアプローチは新たな状況に一般化できる。
論文 参考訳(メタデータ) (2020-10-27T17:41:57Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
本稿では,RLエージェントのより優れた一般化を実現するために,情報理論正則化目標とアニーリングに基づく最適化手法を提案する。
迷路ナビゲーションからロボットタスクまで、さまざまな領域において、我々のアプローチの極端な一般化の利点を実証する。
この研究は、タスク解決のために冗長な情報を徐々に取り除き、RLの一般化を改善するための原則化された方法を提供する。
論文 参考訳(メタデータ) (2020-08-03T02:24:20Z) - Deep Reinforcement Learning amidst Lifelong Non-Stationarity [67.24635298387624]
政治以外のRLアルゴリズムは、寿命の長い非定常性に対処できることを示す。
提案手法は潜在変数モデルを用いて,現在および過去の経験から環境表現を学習する。
また, 生涯の非定常性を示すシミュレーション環境もいくつか導入し, 環境変化を考慮しないアプローチを著しく上回っていることを実証的に確認した。
論文 参考訳(メタデータ) (2020-06-18T17:34:50Z) - Never Stop Learning: The Effectiveness of Fine-Tuning in Robotic
Reinforcement Learning [109.77163932886413]
本稿では,ロボットによるロボット操作ポリシーを,政治以外の強化学習を通じて微調整することで,新たなバリエーションに適応する方法を示す。
この適応は、タスクをゼロから学習するために必要なデータの0.2%未満を使用する。
事前訓練されたポリシーを適用するという私たちのアプローチは、微調整の過程で大きなパフォーマンス向上につながります。
論文 参考訳(メタデータ) (2020-04-21T17:57:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。