論文の概要: Learning Task-Aware Energy Disaggregation: a Federated Approach
- arxiv url: http://arxiv.org/abs/2204.06767v1
- Date: Thu, 14 Apr 2022 05:53:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-16 00:31:28.865330
- Title: Learning Task-Aware Energy Disaggregation: a Federated Approach
- Title(参考訳): タスク対応型エネルギー分散学習 : フェデレーションアプローチ
- Authors: Ruohong Liu, Yize Chen
- Abstract要約: 非侵入負荷監視(NILM)は、集約されたメーター測定に基づいて、個々のデバイスの消費電力プロファイルを見つけることを目的としている。
しかし、そのような住宅負荷データセットの収集には、膨大な努力と顧客による計測データの共有の承認が必要である。
NILMタスクのための分散型・タスク適応型学習手法を提案し,タスク固有のモデルを総合的に学習するためのネスト型メタ学習とフェデレーション型学習ステップを設計する。
- 参考スコア(独自算出の注目度): 1.52292571922932
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of learning the energy disaggregation signals for
residential load data. Such task is referred as non-intrusive load monitoring
(NILM), and in order to find individual devices' power consumption profiles
based on aggregated meter measurements, a machine learning model is usually
trained based on large amount of training data coming from a number of
residential homes. Yet collecting such residential load datasets require both
huge efforts and customers' approval on sharing metering data, while load data
coming from different regions or electricity users may exhibit heterogeneous
usage patterns. Both practical concerns make training a single, centralized
NILM model challenging. In this paper, we propose a decentralized and
task-adaptive learning scheme for NILM tasks, where nested meta learning and
federated learning steps are designed for learning task-specific models
collectively. Simulation results on benchmark dataset validate proposed
algorithm's performance on efficiently inferring appliance-level consumption
for a variety of homes and appliances.
- Abstract(参考訳): 住宅負荷データに対するエネルギー分散信号の学習の問題点を考察する。
このようなタスクは非侵入負荷監視(non-intrusive load monitoring, nilm)と呼ばれ、集約されたメーター計測に基づいて個々のデバイスの消費電力プロファイルを見つけるために、多くの住宅からの大量のトレーニングデータに基づいて機械学習モデルをトレーニングする。
しかし、このような住宅負荷データセットの収集には、測定データの共有に多大な努力と顧客の承認が必要であり、異なるリージョンや電力ユーザからの負荷データは、異種の使用パターンを示す可能性がある。
どちらも、トレーニングを単一の集中型NILMモデルにすることを難しくしている。
本稿では,nested meta learning と federated learning を総合的に学習するために設計した nilm タスクのための分散化およびタスク適応学習方式を提案する。
ベンチマークデータセットのシミュレーション結果は、様々な家庭や家電製品の家電レベルの消費を効率的に推定するアルゴリズムの性能を検証する。
関連論文リスト
- Benchmarking Active Learning for NILM [2.896640219222859]
非侵入負荷モニタリング(NILM)は、家電固有の用途に家庭の電力消費を分散させることに焦点を当てている。
多くの高度なNILM法は、通常大量のラベル付きアプライアンスデータを必要とするニューラルネットワークに基づいている。
限られた住宅に家電モニターを選択的に設置するための能動的学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-24T12:22:59Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
最近の研究は、勾配上昇(GA)を通した大規模言語モデル(LLM)の未学習にアプローチし始めている。
その単純さと効率性にもかかわらず、我々はGAベースの手法が過剰な未学習の傾向に直面することを示唆している。
過剰な未学習の度合いを制御できるいくつかの制御手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - Combating Missing Modalities in Egocentric Videos at Test Time [92.38662956154256]
現実のアプリケーションは、プライバシの懸念、効率性の必要性、ハードウェアの問題により、不完全なモダリティを伴う問題に直面することが多い。
再トレーニングを必要とせずに,テスト時にこの問題に対処する新しい手法を提案する。
MiDlは、欠落したモダリティをテスト時にのみ扱う、自己管理型のオンラインソリューションとしては初めてのものだ。
論文 参考訳(メタデータ) (2024-04-23T16:01:33Z) - MATNilm: Multi-appliance-task Non-intrusive Load Monitoring with Limited
Labeled Data [4.460954839118025]
既存のアプローチは主に、各アプライアンス用の個別モデルの開発に重点を置いている。
本稿では,トレーニング効率のよいサンプル拡張方式を用いたマルチアプライアンス・タスク・フレームワークを提案する。
相対誤差は平均で50%以上削減できる。
論文 参考訳(メタデータ) (2023-07-27T11:14:11Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Non-Intrusive Load Monitoring (NILM) using Deep Neural Networks: A
Review [0.0]
非侵入負荷監視(Non-Inrusive Load Monitoring, NILM)は、総エネルギー消費プロファイルを個々の機器負荷プロファイルに分解する手法である。
機械学習やディープラーニングを含む様々な手法がNILMアルゴリズムの実装と改善に用いられてきた。
本稿では, 深層学習に基づく最近のNILM手法を概観し, 住宅負荷の最も正確な方法を紹介する。
論文 参考訳(メタデータ) (2023-06-08T08:11:21Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
本稿では,オフラインデータから新しいタスクへ,潜在的に有用なダイナミックスや動作デモを伝達するモデルベースRL法を提案する。
主な考え方は、世界モデルを行動学習のシミュレーターとしてだけでなく、タスクの関連性を測定するツールとして使うことである。
本稿では,Meta-WorldとDeepMind Control Suiteの最先端手法と比較して,我々のアプローチの利点を実証する。
論文 参考訳(メタデータ) (2023-06-06T02:24:41Z) - Evolutionary Deep Nets for Non-Intrusive Load Monitoring [5.415995239349699]
非侵入負荷モニタリング(Non-Intrusive Load Monitoring, NILM)は、家庭内の個々の家電の電力消費を1つの集約単位で追跡するエネルギー効率モニタリング技術である。
ディープ・ラーニング・アプローチは、デグレゲーションを操作するために実装されている。
論文 参考訳(メタデータ) (2023-03-06T22:47:40Z) - Energy-Efficient and Federated Meta-Learning via Projected Stochastic
Gradient Ascent [79.58680275615752]
エネルギー効率のよいメタラーニングフレームワークを提案する。
各タスクは別々のエージェントによって所有されていると仮定するため、メタモデルをトレーニングするために限られたタスクが使用される。
論文 参考訳(メタデータ) (2021-05-31T08:15:44Z) - A Federated Learning Framework for Non-Intrusive Load Monitoring [0.1657441317977376]
非侵入負荷モニタリング (NILM) は, 家庭用電力消費の総読み出しを家電製品に分解することを目的としている。
NILMデータを所有しているユーティリティやDNO間のデータ連携はますます重要になっている。
フェデレーションラーニング(FL)によるNILMのパフォーマンス向上のためのフレームワークが構築されました。
論文 参考訳(メタデータ) (2021-04-04T14:24:50Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
我々は,MAML や Dif-MAML と呼ばれる協調型マルチエージェントメタ学習アルゴリズムを提案する。
提案手法により, エージェントの集合が線形速度で合意に達し, 集約MAMLの定常点に収束できることを示す。
シミュレーションの結果は従来の非協調的な環境と比較して理論的な結果と優れた性能を示している。
論文 参考訳(メタデータ) (2020-10-06T16:51:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。