論文の概要: Challenges for Open-domain Targeted Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2204.06893v2
- Date: Fri, 15 Apr 2022 06:08:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-18 11:22:23.613642
- Title: Challenges for Open-domain Targeted Sentiment Analysis
- Title(参考訳): オープンドメイン目標感分析の課題
- Authors: Yun Luo and Hongjie Cai and Linyi Yang and Yanxia Qin and Rui Xia and
Yue Zhang
- Abstract要約: そこで本研究では、6,013個の人間ラベル付きデータからなる新しいデータセットを提案する。
また、文書中の完全な感情情報を抽出するためのネストされたターゲットアノテーションスキーマも提供します。
- 参考スコア(独自算出の注目度): 21.61943346030794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since previous studies on open-domain targeted sentiment analysis are limited
in dataset domain variety and sentence level, we propose a novel dataset
consisting of 6,013 human-labeled data to extend the data domains in topics of
interest and document level. Furthermore, we offer a nested target annotation
schema to extract the complete sentiment information in documents, boosting the
practicality and effectiveness of open-domain targeted sentiment analysis.
Moreover, we leverage the pre-trained model BART in a sequence-to-sequence
generation method for the task. Benchmark results show that there exists large
room for improvement of open-domain targeted sentiment analysis. Meanwhile,
experiments have shown that challenges remain in the effective use of
open-domain data, long documents, the complexity of target structure, and
domain variances.
- Abstract(参考訳): 従来,オープンドメインを対象とした感情分析はデータセット領域の多様性や文レベルに制限されていたため,興味や文書レベルのトピックでデータ領域を拡張するために,6,013人のラベル付きデータからなる新しいデータセットを提案する。
さらに,文書の完全な感情情報を抽出するためのネスト化されたターゲットアノテーションスキーマを提供し,オープンドメインターゲット感情分析の実用性と有効性を高める。
さらに,タスクのシーケンス・ツー・シーケンス生成法において,事前学習したモデルBARTを利用する。
ベンチマークの結果,オープンドメイン型感情分析の改善の余地は大きいことがわかった。
一方、実験では、オープンドメインデータ、長いドキュメント、ターゲット構造の複雑さ、ドメイン分散の効果的な利用に課題が残っていることが示されている。
関連論文リスト
- Stratified Domain Adaptation: A Progressive Self-Training Approach for Scene Text Recognition [1.2878987353423252]
シーンテキスト認識(STR)において、教師なしドメイン適応(UDA)がますます普及している。
本稿では,StrDA(Stratified Domain Adaptation)アプローチを導入し,学習プロセスにおける領域ギャップの段階的エスカレーションについて検討する。
本稿では,データサンプルの分布外および領域判別レベルを推定するために,領域判別器を用いる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-13T16:40:48Z) - Boosting Large Language Models with Continual Learning for Aspect-based Sentiment Analysis [33.86086075084374]
アスペクトベース感情分析(ABSA)は感情分析の重要なサブタスクである。
ABSAのための大規模言語モデルに基づく連続学習(textttLLM-CL)モデルを提案する。
論文 参考訳(メタデータ) (2024-05-09T02:00:07Z) - Bidirectional Generative Framework for Cross-domain Aspect-based
Sentiment Analysis [68.742820522137]
クロスドメインアスペクトベースの感情分析(ABSA)は、ソースドメインから知識を伝達することで、ターゲットドメイン上で様々なきめ細かい感情分析タスクを実行することを目的としている。
本稿では,多様なドメイン間ABSAタスクに対処するための統合双方向生成フレームワークを提案する。
我々のフレームワークは、テキストからラベルまでの方向とラベルからテキストへの方向の両方で生成モデルを訓練する。
論文 参考訳(メタデータ) (2023-05-16T15:02:23Z) - A Comprehensive Survey on Source-free Domain Adaptation [69.17622123344327]
ソースフリードメイン適応(SFDA)の研究は近年注目を集めている。
SFDAの最近の進歩を包括的に調査し、それらを統一的な分類体系に整理する。
一般的な3つの分類基準で30以上のSFDA法を比較検討した。
論文 参考訳(メタデータ) (2023-02-23T06:32:09Z) - Key Design Choices for Double-Transfer in Source-Free Unsupervised
Domain Adaptation [18.21955526087808]
本稿では、SF-UDA(Source-Free Unsupervised Domain Adaptation)における主要な設計選択の詳細な分析を行う。
正規化アプローチ、事前学習戦略、バックボーンアーキテクチャを最も重要な要素として挙げる。
SF-UDAは、標準ベンチマークやバックボーンアーキテクチャよりも競争力があり、データと計算コストのごく一部でUDAと同等の性能を発揮することを示す。
論文 参考訳(メタデータ) (2023-02-10T17:00:37Z) - MADAv2: Advanced Multi-Anchor Based Active Domain Adaptation
Segmentation [98.09845149258972]
セマンティックセグメンテーションタスクに関するドメイン適応を支援するために,アクティブなサンプル選択を導入する。
これらのサンプルを手動でアノテートする作業量が少ないため、ターゲット領域分布の歪みを効果的に緩和することができる。
長期分布問題を緩和するために、強力な半教師付きドメイン適応戦略を提案する。
論文 参考訳(メタデータ) (2023-01-18T07:55:22Z) - Mere Contrastive Learning for Cross-Domain Sentiment Analysis [23.350121129347556]
クロスドメイン感情分析は、ソースドメインでトレーニングされたモデルを使用して、ターゲットドメイン内のテキストの感情を予測することを目的としている。
従来の研究はほとんどがクロスエントロピーに基づく手法であり、不安定性や一般化の低さに悩まされていた。
我々は,同じクラスからの文表現を閉じるように,バッチ内の負のサンプルを付加した改良されたコントラスト目的を提案する。
論文 参考訳(メタデータ) (2022-08-18T07:25:55Z) - Cross-Domain Label-Adaptive Stance Detection [32.800766653254634]
距離検出は、ターゲットに対する作家の視点の分類に関するものである。
本稿では,16のスタンス検出データセットの詳細な分析を行う。
ユーザ定義ラベルの領域外予測のためのエンドツーエンドの非監視フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-15T14:04:29Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA)は、ラベル付きデータが利用できないターゲットドメインでモデルを学習する問題を指す。
本稿では,視覚データセット中の潜在ドメインを自動的に発見することにより,udaの問題に対処する新しい深層アーキテクチャを提案する。
提案手法を公開ベンチマークで評価し,最先端のドメイン適応手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-03-25T14:33:33Z) - Domain Adaptation with Incomplete Target Domains [61.68950959231601]
本稿では、この新たなドメイン適応問題に対処するために、不完全データインプットに基づく Adversarial Network (IDIAN) モデルを提案する。
提案モデルでは,対象領域における部分的な観測に基づいて,欠落した特徴値を満たすデータ計算モジュールを設計する。
我々は、クロスドメインベンチマークタスクと、不完全なターゲットドメインを用いた実世界適応タスクの両方で実験を行う。
論文 参考訳(メタデータ) (2020-12-03T00:07:40Z) - WikiAsp: A Dataset for Multi-domain Aspect-based Summarization [69.13865812754058]
マルチドメインアスペクトベースの要約のための大規模データセットであるWikiAspを提案する。
具体的には、アスペクトアノテーションのプロキシとして、各記事のセクションタイトルとバウンダリを使用して、20の異なるドメインからウィキペディア記事を使用してデータセットを構築します。
その結果,既存の要約モデルがこの設定で直面する重要な課題,例えば引用されたソースの適切な代名詞処理,時間に敏感なイベントの一貫した説明などが浮き彫りになった。
論文 参考訳(メタデータ) (2020-11-16T10:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。