Latent Hatred: A Benchmark for Understanding Implicit Hate Speech
- URL: http://arxiv.org/abs/2109.05322v1
- Date: Sat, 11 Sep 2021 16:52:56 GMT
- Title: Latent Hatred: A Benchmark for Understanding Implicit Hate Speech
- Authors: Mai ElSherief, Caleb Ziems, David Muchlinski, Vaishnavi Anupindi,
Jordyn Seybolt, Munmun De Choudhury, Diyi Yang
- Abstract summary: This work introduces a theoretically-justified taxonomy of implicit hate speech and a benchmark corpus with fine-grained labels for each message.
We present systematic analyses of our dataset using contemporary baselines to detect and explain implicit hate speech.
- Score: 22.420275418616242
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hate speech has grown significantly on social media, causing serious
consequences for victims of all demographics. Despite much attention being paid
to characterize and detect discriminatory speech, most work has focused on
explicit or overt hate speech, failing to address a more pervasive form based
on coded or indirect language. To fill this gap, this work introduces a
theoretically-justified taxonomy of implicit hate speech and a benchmark corpus
with fine-grained labels for each message and its implication. We present
systematic analyses of our dataset using contemporary baselines to detect and
explain implicit hate speech, and we discuss key features that challenge
existing models. This dataset will continue to serve as a useful benchmark for
understanding this multifaceted issue.
Related papers
- Towards Interpretable Hate Speech Detection using Large Language Model-extracted Rationales [15.458557611029518]
Social media platforms are a prominent arena for users to engage in interpersonal discussions and express opinions.
There arises a need to automatically identify and flag instances of hate speech.
We propose to use state-of-the-art Large Language Models (LLMs) to extract features in the form of rationales from the input text.
arXiv Detail & Related papers (2024-03-19T03:22:35Z) - An Investigation of Large Language Models for Real-World Hate Speech
Detection [46.15140831710683]
A major limitation of existing methods is that hate speech detection is a highly contextual problem.
Recently, large language models (LLMs) have demonstrated state-of-the-art performance in several natural language tasks.
Our study reveals that a meticulously crafted reasoning prompt can effectively capture the context of hate speech.
arXiv Detail & Related papers (2024-01-07T00:39:33Z) - HARE: Explainable Hate Speech Detection with Step-by-Step Reasoning [29.519687405350304]
We introduce a hate speech detection framework, HARE, which harnesses the reasoning capabilities of large language models (LLMs) to fill gaps in explanations of hate speech.
Experiments on SBIC and Implicit Hate benchmarks show that our method, using model-generated data, consistently outperforms baselines.
Our method enhances the explanation quality of trained models and improves generalization to unseen datasets.
arXiv Detail & Related papers (2023-11-01T06:09:54Z) - On the Challenges of Building Datasets for Hate Speech Detection [0.0]
We first analyze the issues surrounding hate speech detection through a data-centric lens.
We then outline a holistic framework to encapsulate the data creation pipeline across seven broad dimensions.
arXiv Detail & Related papers (2023-09-06T11:15:47Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSyn is a context-synergized neural network that explicitly incorporates user- and conversational context for detecting implicit hate speech in online conversations.
We show that CoSyn outperforms all our baselines in detecting implicit hate speech with absolute improvements in the range of 1.24% - 57.8%.
arXiv Detail & Related papers (2023-03-02T17:30:43Z) - Leveraging World Knowledge in Implicit Hate Speech Detection [5.5536024561229205]
We show that real world knowledge about entity mentions in a text does help models better detect hate speech.
We also discuss cases where real world knowledge does not add value to hate speech detection.
arXiv Detail & Related papers (2022-12-28T21:23:55Z) - ToKen: Task Decomposition and Knowledge Infusion for Few-Shot Hate
Speech Detection [85.68684067031909]
We frame this problem as a few-shot learning task, and show significant gains with decomposing the task into its "constituent" parts.
In addition, we see that infusing knowledge from reasoning datasets (e.g. Atomic 2020) improves the performance even further.
arXiv Detail & Related papers (2022-05-25T05:10:08Z) - Anti-Asian Hate Speech Detection via Data Augmented Semantic Relation
Inference [4.885207279350052]
We propose a novel approach to leverage sentiment hashtags to enhance hate speech detection in a natural language inference framework.
We design a novel framework SRIC that simultaneously performs two tasks: (1) semantic relation inference between online posts and sentiment hashtags, and (2) sentiment classification on these posts.
arXiv Detail & Related papers (2022-04-14T15:03:35Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
We present here a large-scale empirical comparison of deep and shallow hate-speech detection methods.
Our goal is to illuminate progress in the area, and identify strengths and weaknesses in the current state-of-the-art.
In doing so we aim to provide guidance as to the use of hate-speech detection in practice, quantify the state-of-the-art, and identify future research directions.
arXiv Detail & Related papers (2022-02-19T03:48:20Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
In this paper we focus on cross-lingual transfer learning to support hate speech detection in low-resource languages.
We leverage cross-lingual word embeddings to train our neural network systems on the source language and apply it to the target language.
We investigate the issue of label imbalance of hate speech datasets, since the high ratio of non-hate examples compared to hate examples often leads to low model performance.
arXiv Detail & Related papers (2022-01-15T20:48:14Z) - Did they answer? Subjective acts and intents in conversational discourse [48.63528550837949]
We present the first discourse dataset with multiple and subjective interpretations of English conversation.
We show disagreements are nuanced and require a deeper understanding of the different contextual factors.
arXiv Detail & Related papers (2021-04-09T16:34:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.