Sequential Multi-task Learning with Task Dependency for Appeal Judgment
Prediction
- URL: http://arxiv.org/abs/2204.07046v1
- Date: Wed, 9 Mar 2022 08:51:13 GMT
- Title: Sequential Multi-task Learning with Task Dependency for Appeal Judgment
Prediction
- Authors: Lianxin Song, Xiaohui Han, Guangqi Liu, Wentong Wang, Chaoran Cui,
Yilong Yin
- Abstract summary: Legal Judgment Prediction (LJP) aims to automatically predict judgment results, such as charges, relevant law articles, and the term of penalty.
This paper concerns a worthwhile but not well-studied LJP task, Appeal judgment Prediction (AJP), which predicts the judgment of an appellate court on an appeal case.
We propose a Sequential Multi-task Learning Framework with Task Dependency for Appeal Judgement Prediction (SMAJudge) to address these challenges.
- Score: 28.505366852202794
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Legal Judgment Prediction (LJP) aims to automatically predict judgment
results, such as charges, relevant law articles, and the term of penalty. It
plays a vital role in legal assistant systems and has become a popular research
topic in recent years. This paper concerns a worthwhile but not well-studied
LJP task, Appeal judgment Prediction (AJP), which predicts the judgment of an
appellate court on an appeal case based on the textual description of case
facts and grounds of appeal. There are two significant challenges in practice
to solve the AJP task. One is how to model the appeal judgment procedure
appropriately. The other is how to improve the interpretability of the
prediction results. We propose a Sequential Multi-task Learning Framework with
Task Dependency for Appeal Judgement Prediction (SMAJudge) to address these
challenges. SMAJudge utilizes two sequential components to model the complete
proceeding from the lower court to the appellate court and employs an attention
mechanism to make the prediction more explainable, which handles the challenges
of AJP effectively. Experimental results obtained with a dataset consisting of
more than 30K appeal judgment documents have revealed the effectiveness and
superiority of SMAJudge.
Related papers
- JudgeRank: Leveraging Large Language Models for Reasoning-Intensive Reranking [81.88787401178378]
We introduce JudgeRank, a novel agentic reranker that emulates human cognitive processes when assessing document relevance.
We evaluate JudgeRank on the reasoning-intensive BRIGHT benchmark, demonstrating substantial performance improvements over first-stage retrieval methods.
In addition, JudgeRank performs on par with fine-tuned state-of-the-art rerankers on the popular BEIR benchmark, validating its zero-shot generalization capability.
arXiv Detail & Related papers (2024-10-31T18:43:12Z) - Aligning Large Language Models by On-Policy Self-Judgment [49.31895979525054]
Existing approaches for aligning large language models with human preferences face a trade-off that requires a separate reward model (RM) for on-policy learning.
We present a novel alignment framework, SELF-JUDGE, that does on-policy learning and is parameter efficient.
We show that the rejecting sampling by itself can improve performance further without an additional evaluator.
arXiv Detail & Related papers (2024-02-17T11:25:26Z) - Multi-Defendant Legal Judgment Prediction via Hierarchical Reasoning [49.23103067844278]
We propose the task of multi-defendant LJP, which aims to automatically predict the judgment results for each defendant of multi-defendant cases.
Two challenges arise with the task of multi-defendant LJP: (1) indistinguishable judgment results among various defendants; and (2) the lack of a real-world dataset for training and evaluation.
arXiv Detail & Related papers (2023-12-10T04:46:30Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
Legal Judgment Prediction (LJP) has become an increasingly crucial task in Legal AI.
Precedents are the previous legal cases with similar facts, which are the basis for the judgment of the subsequent case in national legal systems.
Recent advances in deep learning have enabled a variety of techniques to be used to solve the LJP task.
arXiv Detail & Related papers (2023-10-13T16:47:20Z) - Adversarially Robust Neural Legal Judgement Systems [0.0]
Legal judgment prediction is a task of predicting the outcome of court cases on a given text description of facts of cases.
For such systems to be practically helpful, they should be robust from adversarial attacks.
We propose an approach for making robust Legal Judgement Prediction systems.
arXiv Detail & Related papers (2023-07-31T21:44:48Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
Given the fact description text of a legal case, legal judgment prediction aims to predict the case's charge, law article and penalty term.
Previous studies fail to distinguish different classification errors with a standard cross-entropy classification loss.
We propose a moco-based supervised contrastive learning to learn distinguishable representations.
We further enhance the representation of the fact description with extracted crime amounts which are encoded by a pre-trained numeracy model.
arXiv Detail & Related papers (2022-11-15T15:53:56Z) - ILDC for CJPE: Indian Legal Documents Corpus for Court Judgment
Prediction and Explanation [3.285073688021526]
We propose the task of Court Judgment Prediction and Explanation (CJPE)
CJPE requires an automated system to predict an explainable outcome of a case.
Our best prediction model has an accuracy of 78% versus 94% for human legal experts.
arXiv Detail & Related papers (2021-05-28T03:07:32Z) - Equality before the Law: Legal Judgment Consistency Analysis for
Fairness [55.91612739713396]
In this paper, we propose an evaluation metric for judgment inconsistency, Legal Inconsistency Coefficient (LInCo)
We simulate judges from different groups with legal judgment prediction (LJP) models and measure the judicial inconsistency with the disagreement of the judgment results given by LJP models trained on different groups.
We employ LInCo to explore the inconsistency in real cases and come to the following observations: (1) Both regional and gender inconsistency exist in the legal system, but gender inconsistency is much less than regional inconsistency.
arXiv Detail & Related papers (2021-03-25T14:28:00Z) - Legal Judgment Prediction (LJP) Amid the Advent of Autonomous AI Legal
Reasoning [0.0]
Legal Judgment Prediction is a longstanding and open topic in the theory and practice-of-law.
Various methods and techniques to predict legal cases and judicial actions have emerged over time.
The advent of AI Legal Reasoning will have a pronounced impact on how LJP is performed and its predictive accuracy.
arXiv Detail & Related papers (2020-09-29T00:12:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.