論文の概要: MetaSets: Meta-Learning on Point Sets for Generalizable Representations
- arxiv url: http://arxiv.org/abs/2204.07311v1
- Date: Fri, 15 Apr 2022 03:24:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-18 11:40:03.340034
- Title: MetaSets: Meta-Learning on Point Sets for Generalizable Representations
- Title(参考訳): MetaSets: 一般化可能な表現のためのポイントセットのメタラーニング
- Authors: Chao Huang, Zhangjie Cao, Yunbo Wang, Jianmin Wang, Mingsheng Long
- Abstract要約: 本稿では,3次元領域一般化(DDG)の新たな課題について検討し,学習過程においてそれらにアクセスすることなく,他の目に見えない点雲の領域にモデルを一般化することを目的とする。
本稿ではメタセットを用いてこの問題に対処することを提案する。メタ学習は、慎重に設計された変換された点集合上の分類タスク群からポイントクラウド表現を抽出する。
実験結果から,MetaSetsは既存の3次元深層学習手法よりも大きなマージンで優れていることが示された。
- 参考スコア(独自算出の注目度): 100.5981809166658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning techniques for point clouds have achieved strong performance on
a range of 3D vision tasks. However, it is costly to annotate large-scale point
sets, making it critical to learn generalizable representations that can
transfer well across different point sets. In this paper, we study a new
problem of 3D Domain Generalization (3DDG) with the goal to generalize the
model to other unseen domains of point clouds without any access to them in the
training process. It is a challenging problem due to the substantial geometry
shift from simulated to real data, such that most existing 3D models
underperform due to overfitting the complete geometries in the source domain.
We propose to tackle this problem via MetaSets, which meta-learns point cloud
representations from a group of classification tasks on carefully-designed
transformed point sets containing specific geometry priors. The learned
representations are more generalizable to various unseen domains of different
geometries. We design two benchmarks for Sim-to-Real transfer of 3D point
clouds. Experimental results show that MetaSets outperforms existing 3D deep
learning methods by large margins.
- Abstract(参考訳): ポイントクラウドのためのディープラーニング技術は、さまざまな3Dビジョンタスクで強力なパフォーマンスを達成した。
しかし、大規模な点集合に注釈を付けるのはコストがかかり、異なる点集合をよく移動できる一般化表現を学ぶことは重要である。
本稿では,3次元領域一般化(DDG)の新たな課題について検討し,学習過程においてそれらにアクセスすることなく,他の目に見えない点雲領域にモデルを一般化することを目的とする。
シミュレーションデータから実データへの実質的にの幾何シフトのため、既存の3dモデルは、ソースドメインの完全なジオメトリを過度に満たしているため、あまり役に立たない。
我々は,特定の幾何学的事前を含む注意深く設計された変換された点集合上の分類タスク群からクラウド表現をメタリーンズするメタセットを用いてこの問題に取り組むことを提案する。
学習された表現は、異なる幾何学の様々な目に見えない領域に対してより一般化できる。
3次元点雲のSim-to-Real転送のための2つのベンチマークを設計する。
実験の結果,MetaSetsは既存の3次元深層学習法よりも大きなマージンで優れていた。
関連論文リスト
- Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
従来の3Dネットワークは主に局所幾何学的詳細に焦点を当て、局所幾何学間の位相構造を無視する。
そこで本稿では,大規模画像上においてよく訓練されたトランスフォーマーから前駆体を抽出する,新しい先駆体蒸留法を提案する。
PointDA-10とSim-to-Realデータセットの実験は、提案手法が点クラウド分類におけるUDAの最先端性能を一貫して達成していることを検証する。
論文 参考訳(メタデータ) (2024-07-26T06:29:09Z) - Geometrically-driven Aggregation for Zero-shot 3D Point Cloud Understanding [11.416392706435415]
ゼロショット3Dポイントクラウド理解は2Dビジョンランゲージモデル(VLM)によって達成できる
既存の戦略は、ヴィジュアル・ランゲージ・モデル(Vision-Language Model)をレンダリングまたはキャプチャされた2Dピクセルから3Dポイントにマッピングし、固有かつ表現可能な雲の幾何学構造を見渡す。
本稿では, 点雲の3次元幾何学的構造を利用して, 移動したビジョン・ランゲージモデルの品質を向上させるための, 初となるトレーニングフリーアグリゲーション手法を提案する。
論文 参考訳(メタデータ) (2023-12-04T12:30:07Z) - U3DS$^3$: Unsupervised 3D Semantic Scene Segmentation [19.706172244951116]
本稿では,U3DS$3$について,総合的な3Dシーンに対して,完全に教師なしのポイントクラウドセグメンテーションに向けたステップとして提示する。
提案手法の最初のステップは,各シーンの幾何学的特徴に基づいてスーパーポイントを生成することである。
次に、空間クラスタリングに基づく手法を用いて学習プロセスを行い、次いで、クラスタセントロイドに応じて生成された擬似ラベルを用いて反復的なトレーニングを行う。
論文 参考訳(メタデータ) (2023-11-10T12:05:35Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
本稿では3Dポイントクラウドセグメンテーションタスクに様々な基礎モデルを適用する新しいフレームワークを提案する。
我々のアプローチでは、異なる大きな視覚モデルを用いて2次元セマンティックマスクの初期予測を行う。
本研究では,ロバストな3Dセマンティックな擬似ラベルを生成するために,投票による全ての結果を効果的に組み合わせたセマンティックなラベル融合戦略を提案する。
論文 参考訳(メタデータ) (2023-11-03T15:41:15Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
本稿では,ポイントクラウド分析のためのクラスタリングに基づく教師付き学習手法を提案する。
現在のデファクトでシーンワイドなトレーニングパラダイムとは異なり、我々のアルゴリズムは点埋め込み空間上でクラス内のクラスタリングを行う。
我々のアルゴリズムは、有名なポイントクラウドセグメンテーションデータセットの顕著な改善を示している。
論文 参考訳(メタデータ) (2023-07-27T03:42:12Z) - Point-GCC: Universal Self-supervised 3D Scene Pre-training via
Geometry-Color Contrast [9.14535402695962]
点雲によって提供される幾何学と色情報は、3Dシーンの理解に不可欠である。
我々はGeometry-Color Contrast (Point-GCC) を用いたユニバーサル3次元シーン事前学習フレームワークを提案する。
ポイントGCCは、シムズネットワークを用いて幾何学と色情報を整列する。
論文 参考訳(メタデータ) (2023-05-31T07:44:03Z) - CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D
Point Cloud Understanding [2.8661021832561757]
CrossPointは、転送可能な3Dポイントクラウド表現を学習するための、単純なクロスモーダルコントラスト学習アプローチである。
提案手法は,従来の教師なし学習手法よりも,3次元オブジェクト分類やセグメンテーションなど,さまざまな下流タスクにおいて優れていた。
論文 参考訳(メタデータ) (2022-03-01T18:59:01Z) - Learning Geometry-Disentangled Representation for Complementary
Understanding of 3D Object Point Cloud [50.56461318879761]
3次元画像処理のためのGDANet(Geometry-Disentangled Attention Network)を提案する。
GDANetは、点雲を3Dオブジェクトの輪郭と平らな部分に切り離し、それぞれ鋭い変化成分と穏やかな変化成分で表される。
3Dオブジェクトの分類とセグメンテーションベンチマークの実験は、GDANetがより少ないパラメータで最先端の処理を実現していることを示している。
論文 参考訳(メタデータ) (2020-12-20T13:35:00Z) - ParaNet: Deep Regular Representation for 3D Point Clouds [62.81379889095186]
ParaNetは、3Dポイントクラウドを表現するための新しいエンドツーエンドのディープラーニングフレームワークである。
不規則な3D点雲を通常の2Dカラー画像に変換する。
多視点投影とボキセル化に基づく従来の正規表現法とは異なり、提案した表現は微分可能で可逆である。
論文 参考訳(メタデータ) (2020-12-05T13:19:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。