論文の概要: The Importance of Credo in Multiagent Learning
- arxiv url: http://arxiv.org/abs/2204.07471v2
- Date: Wed, 12 Apr 2023 15:04:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-13 19:13:27.098819
- Title: The Importance of Credo in Multiagent Learning
- Title(参考訳): マルチエージェント学習におけるcredoの重要性
- Authors: David Radke, Kate Larson, Tim Brecht
- Abstract要約: 本稿では,複数のグループに構成されたシステム内のエージェントに対する,多目的最適化のモデルであるクレドを提案する。
結果から,チームメイトやシステム全体の利益は,グローバルな成果を達成するために完全に整合する必要はないことが示唆された。
- 参考スコア(独自算出の注目度): 5.334505575267924
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We propose a model for multi-objective optimization, a credo, for agents in a
system that are configured into multiple groups (i.e., teams). Our model of
credo regulates how agents optimize their behavior for the groups they belong
to. We evaluate credo in the context of challenging social dilemmas with
reinforcement learning agents. Our results indicate that the interests of
teammates, or the entire system, are not required to be fully aligned for
achieving globally beneficial outcomes. We identify two scenarios without full
common interest that achieve high equality and significantly higher mean
population rewards compared to when the interests of all agents are aligned.
- Abstract(参考訳): 本稿では,複数のグループ(チーム)に構成されたシステム内のエージェントに対する,多目的最適化のモデルであるクレドを提案する。
credoのモデルは、エージェントが属するグループに対する行動をどのように最適化するかを規定します。
我々は,強化学習エージェントを用いて社会ジレンマに挑戦する文脈でクレドを評価する。
結果から,チームメイトやシステム全体の利益は,グローバルな成果を達成するために完全に整合する必要はないことが示唆された。
我々は、すべてのエージェントの利益が一致している場合と比較して、高い平等と著しく高い平均人口報酬を達成する、完全な共通の関心を持たない2つのシナリオを特定する。
関連論文リスト
- AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
本稿では,その構成をより高機能なシステムとして協調的に調整できるマルチエージェントフレームワークを提案する。
実験により,フレームワークが単一エージェントより優れたマルチエージェントグループを効果的に展開できることが実証された。
これらの振舞いの観点から、我々は、ポジティブなものを活用し、ネガティブなものを緩和し、マルチエージェントグループの協調可能性を改善するためのいくつかの戦略について議論する。
論文 参考訳(メタデータ) (2023-08-21T16:47:11Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
マルチエージェント強化学習(MARL)理論における中心的な問題は、構造条件やアルゴリズムの原理がサンプル効率の学習保証につながるかを理解することである。
本稿では,複数のエージェントを用いた対話型意思決定のための一般的な枠組みとして,この問題について考察する。
マルチエージェント意思決定における統計的複雑性を特徴付けることは、単一エージェント決定の統計的複雑性を特徴付けることと等価であることを示す。
論文 参考訳(メタデータ) (2023-05-01T06:46:22Z) - Learning to Learn Group Alignment: A Self-Tuning Credo Framework with
Multiagent Teams [1.370633147306388]
マルチエージェントチームを持つ人口の混合インセンティブは、完全に協調したシステムよりも有利であることが示されている。
個人学習エージェントが報酬関数の様々な部分を通してインセンティブの構成を自己制御する枠組みを提案する。
論文 参考訳(メタデータ) (2023-04-14T18:16:19Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
オフラインマルチエージェント強化学習(MARL)は、事前コンパイルされたデータセットから効果的なマルチエージェントポリシーを学ぶことを目的としている。
オフラインのMARLが学んだエージェントは、しばしばこのランダムなポリシーを継承し、チーム全体のパフォーマンスを脅かす。
この問題に対処するために,共有個人軌道(SIT)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-28T18:11:26Z) - Group-Agent Reinforcement Learning [12.915860504511523]
複数の地理的に分散したエージェントがそれぞれのRLタスクを協調的に実行すれば、各エージェントの強化学習プロセスに大きく貢献できる。
グループエージェント強化学習(GARL)のための分散RLフレームワークDDAL(Decentralized Distributed Asynchronous Learning)を提案する。
論文 参考訳(メタデータ) (2022-02-10T16:40:59Z) - Generalization in Cooperative Multi-Agent Systems [49.16349318581611]
協調型マルチエージェントシステムのための組合せ一般化(CG)の理論的基盤について検討する。
CGは、幅広いアプリケーションにまたがる実用性とデプロイ性を向上させることができるため、自律システムにとって非常に望ましい特徴である。
論文 参考訳(メタデータ) (2022-01-31T21:39:56Z) - Learning to Incentivize Other Learning Agents [73.03133692589532]
我々は、学習インセンティブ関数を用いて、RLエージェントに他のエージェントに直接報酬を与える能力を持たせる方法を示す。
このようなエージェントは、一般的なマルコフゲームにおいて、標準のRLと対戦型エージェントを著しく上回っている。
私たちの仕事は、マルチエージェントの未来において共通の善を確実にする道のりに沿って、より多くの機会と課題を指しています。
論文 参考訳(メタデータ) (2020-06-10T20:12:38Z) - Randomized Entity-wise Factorization for Multi-Agent Reinforcement
Learning [59.62721526353915]
実世界のマルチエージェント設定は、エージェントや非エージェントエンティティのタイプや量が異なるタスクを伴うことが多い。
我々の方法は、これらの共通点を活用することを目的としており、「観察対象のランダムに選択されたサブグループのみを考えるとき、各エージェントが期待する効用は何か?」という問いを投げかける。
論文 参考訳(メタデータ) (2020-06-07T18:28:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。