An Introductory Review of Spiking Neural Network and Artificial Neural
Network: From Biological Intelligence to Artificial Intelligence
- URL: http://arxiv.org/abs/2204.07519v1
- Date: Sat, 9 Apr 2022 09:34:34 GMT
- Title: An Introductory Review of Spiking Neural Network and Artificial Neural
Network: From Biological Intelligence to Artificial Intelligence
- Authors: Shengjie Zheng, Lang Qian, Pingsheng Li, Chenggang He, Xiaoqin Qin,
Xiaojian Li
- Abstract summary: A kind of spiking neural network with biological interpretability is gradually receiving wide attention.
This review hopes to attract different researchers and advance the development of brain-inspired intelligence and artificial intelligence.
- Score: 4.697611383288171
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, stemming from the rapid development of artificial intelligence,
which has gained expansive success in pattern recognition, robotics, and
bioinformatics, neuroscience is also gaining tremendous progress. A kind of
spiking neural network with biological interpretability is gradually receiving
wide attention, and this kind of neural network is also regarded as one of the
directions toward general artificial intelligence. This review introduces the
following sections, the biological background of spiking neurons and the
theoretical basis, different neuronal models, the connectivity of neural
circuits, the mainstream neural network learning mechanisms and network
architectures, etc. This review hopes to attract different researchers and
advance the development of brain-inspired intelligence and artificial
intelligence.
Related papers
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Advanced Computing and Related Applications Leveraging Brain-inspired
Spiking Neural Networks [0.0]
Spiking neural network is one of the cores of artificial intelligence which realizes brain-like computing.
This paper summarizes the strengths, weaknesses and applicability of five neuronal models and analyzes the characteristics of five network topologies.
arXiv Detail & Related papers (2023-09-08T16:41:08Z) - Brain-inspired learning in artificial neural networks: a review [5.064447369892274]
We review current brain-inspired learning representations in artificial neural networks.
We investigate the integration of more biologically plausible mechanisms, such as synaptic plasticity, to enhance these networks' capabilities.
arXiv Detail & Related papers (2023-05-18T18:34:29Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Towards NeuroAI: Introducing Neuronal Diversity into Artificial Neural
Networks [20.99799416963467]
In the human brain, neuronal diversity is an enabling factor for all kinds of biological intelligent behaviors.
In this Primer, we first discuss the preliminaries of biological neuronal diversity and the characteristics of information transmission and processing in a biological neuron.
arXiv Detail & Related papers (2023-01-23T02:23:45Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - Brain-inspired Graph Spiking Neural Networks for Commonsense Knowledge
Representation and Reasoning [11.048601659933249]
How neural networks in the human brain represent commonsense knowledge is an important research topic in neuroscience, cognitive science, psychology, and artificial intelligence.
This work investigates how population encoding and spiking timing-dependent plasticity (STDP) mechanisms can be integrated into the learning of spiking neural networks.
The neuron populations of different communities together constitute the entire commonsense knowledge graph, forming a giant graph spiking neural network.
arXiv Detail & Related papers (2022-07-11T05:22:38Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Neural Networks, Artificial Intelligence and the Computational Brain [0.0]
This study explores the concept of ANNs as a simulator of the biological neuron.
It also explores why brain-like intelligence is needed and how it differs from computational framework.
arXiv Detail & Related papers (2020-12-25T05:56:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.