Establishing trust in quantum computations
- URL: http://arxiv.org/abs/2204.07568v1
- Date: Fri, 15 Apr 2022 17:44:30 GMT
- Title: Establishing trust in quantum computations
- Authors: Timothy Proctor, Stefan Seritan, Erik Nielsen, Kenneth Rudinger, Kevin
Young, Robin Blume-Kohout, Mohan Sarovar
- Abstract summary: We introduce a technique for measuring the fidelity with which an as-built quantum computer can execute an algorithm.
Our technique converts the algorithm's quantum circuits into a set of closely related circuits whose success rates can be efficiently measured.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world quantum computers have grown sufficiently complex that they can no
longer be simulated by classical supercomputers, but their computational power
remains limited by errors. These errors corrupt the results of quantum
algorithms, and it is no longer always feasible to use classical simulations to
directly check the correctness of quantum computations. Without practical
methods for quantifying the accuracy with which a quantum algorithm has been
executed, it is difficult to establish trust in the results of a quantum
computation. Here we solve this problem, by introducing a simple and efficient
technique for measuring the fidelity with which an as-built quantum computer
can execute an algorithm. Our technique converts the algorithm's quantum
circuits into a set of closely related circuits whose success rates can be
efficiently measured. It enables measuring the fidelity of quantum algorithm
executions both in the near-term, with algorithms run on hundreds or thousands
of physical qubits, and into the future, with algorithms run on logical qubits
protected by quantum error correction.
Related papers
- Scalable Quantum Algorithms for Noisy Quantum Computers [0.0]
This thesis develops two main techniques to reduce the quantum computational resource requirements.
The aim is to scale up application sizes on current quantum processors.
While the main focus of application for our algorithms is the simulation of quantum systems, the developed subroutines can further be utilized in the fields of optimization or machine learning.
arXiv Detail & Related papers (2024-03-01T19:36:35Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Recovering the original simplicity: succinct and deterministic quantum
algorithm for the welded tree problem [0.0]
This work revisits quantum algorithms for the well-known welded tree problem.
It proposes a very succinct quantum algorithm based on the simplest coined quantum walks.
arXiv Detail & Related papers (2023-04-17T16:03:50Z) - Simulating the quantum Fourier transform, Grover's algorithm, and the quantum counting algorithm with limited entanglement using tensor-networks [0.0]
We simulate the execution of quantum algorithms with limited entanglement.
We find that the algorithms can be executed with high fidelity even if the entanglement is somewhat reduced.
Our results are promising for the execution of these algorithms on future quantum computers.
arXiv Detail & Related papers (2023-04-04T12:42:18Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - A Quantum Algorithm for Computing All Diagnoses of a Switching Circuit [73.70667578066775]
Faults are by nature while most man-made systems, and especially computers, work deterministically.
This paper provides such a connecting via quantum information theory which is an intuitive approach as quantum physics obeys probability laws.
arXiv Detail & Related papers (2022-09-08T17:55:30Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Multiple Query Optimization using a Hybrid Approach of Classical and
Quantum Computing [1.7077661158850292]
We tackle the multiple query optimization problem (MQO) which is an important NP-hard problem in the area of data-intensive problems.
We propose a novel hybrid classical-quantum algorithm to solve the MQO on a gate-based quantum computer.
Our algorithm shows a qubit efficiency of close to 99% which is almost a factor of 2 higher compared to the state of the art implementation.
arXiv Detail & Related papers (2021-07-22T08:12:49Z) - A non-algorithmic approach to "programming" quantum computers via
machine learning [0.0]
We show that machine learning can be used as a systematic method to construct algorithms, that is, to non-algorithmically "program" quantum computers.
We demonstrate this using a fundamentally non-classical calculation: experimentally estimating the entanglement of an unknown quantum state.
Results from this have been successfully ported to the IBM hardware and trained using a hybrid reinforcement learning method.
arXiv Detail & Related papers (2020-07-16T13:36:21Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.