Interpretable Fault Diagnosis of Rolling Element Bearings with Temporal
Logic Neural Network
- URL: http://arxiv.org/abs/2204.07579v2
- Date: Tue, 19 Apr 2022 08:49:53 GMT
- Title: Interpretable Fault Diagnosis of Rolling Element Bearings with Temporal
Logic Neural Network
- Authors: Gang Chen, Yu Lu, Rong Su, and Zhaodan Kong
- Abstract summary: This paper proposes a novel neural network structure, called temporal logic neural network (TLNN)
TLNN keeps the nice properties of traditional neuron networks but also provides a formal interpretation of itself with formal language.
- Score: 11.830457329372283
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning-based methods have achieved successful applications in
machinery fault diagnosis. However, the main limitation that exists for these
methods is that they operate as a black box and are generally not
interpretable. This paper proposes a novel neural network structure, called
temporal logic neural network (TLNN), in which the neurons of the network are
logic propositions. More importantly, the network can be described and
interpreted as a weighted signal temporal logic. TLNN not only keeps the nice
properties of traditional neuron networks but also provides a formal
interpretation of itself with formal language. Experiments with real datasets
show the proposed neural network can obtain highly accurate fault diagnosis
results with good computation efficiency. Additionally, the embedded formal
language of the neuron network can provide explanations about the decision
process, thus achieve interpretable fault diagnosis.
Related papers
- NeuralFastLAS: Fast Logic-Based Learning from Raw Data [54.938128496934695]
Symbolic rule learners generate interpretable solutions, however they require the input to be encoded symbolically.
Neuro-symbolic approaches overcome this issue by mapping raw data to latent symbolic concepts using a neural network.
We introduce NeuralFastLAS, a scalable and fast end-to-end approach that trains a neural network jointly with a symbolic learner.
arXiv Detail & Related papers (2023-10-08T12:33:42Z) - Injecting Logical Constraints into Neural Networks via Straight-Through
Estimators [5.6613898352023515]
Injecting discrete logical constraints into neural network learning is one of the main challenges in neuro-symbolic AI.
We find that a straight-through-estimator, a method introduced to train binary neural networks, could effectively be applied to incorporate logical constraints into neural network learning.
arXiv Detail & Related papers (2023-07-10T05:12:05Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Neural Bayesian Network Understudy [13.28673601999793]
We show that a neural network can be trained to output conditional probabilities, providing approximately the same functionality as a Bayesian Network.
We propose two training strategies that allow encoding the independence relations inferred from a given causal structure into the neural network.
arXiv Detail & Related papers (2022-11-15T15:56:51Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
We propose a novel brain network representation framework, namely BN-GNN, which searches for the optimal GNN architecture for each brain network.
Our proposed BN-GNN improves the performance of traditional GNNs on different brain network analysis tasks.
arXiv Detail & Related papers (2022-03-18T07:05:27Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
This paper introduces a neural-symbolic learning framework, called Feed-Forward Neural-Symbolic Learner (FF-NSL)
FF-NSL integrates state-of-the-art ILP systems based on the Answer Set semantics, with neural networks, in order to learn interpretable hypotheses from labelled unstructured data.
arXiv Detail & Related papers (2021-06-24T15:38:34Z) - Persistent Homology Captures the Generalization of Neural Networks
Without A Validation Set [0.0]
We suggest studying the training of neural networks with Algebraic Topology, specifically Persistent Homology.
Using simplicial complex representations of neural networks, we study the PH diagram distance evolution on the neural network learning process.
Results show that the PH diagram distance between consecutive neural network states correlates with the validation accuracy.
arXiv Detail & Related papers (2021-05-31T09:17:31Z) - Reinforcement Learning with External Knowledge by using Logical Neural
Networks [67.46162586940905]
A recent neuro-symbolic framework called the Logical Neural Networks (LNNs) can simultaneously provide key-properties of both neural networks and symbolic logic.
We propose an integrated method that enables model-free reinforcement learning from external knowledge sources.
arXiv Detail & Related papers (2021-03-03T12:34:59Z) - On Tractable Representations of Binary Neural Networks [23.50970665150779]
We consider the compilation of a binary neural network's decision function into tractable representations such as Ordered Binary Decision Diagrams (OBDDs) and Sentential Decision Diagrams (SDDs)
In experiments, we show that it is feasible to obtain compact representations of neural networks as SDDs.
arXiv Detail & Related papers (2020-04-05T03:21:26Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.