Theory of Graph Neural Networks: Representation and Learning
- URL: http://arxiv.org/abs/2204.07697v1
- Date: Sat, 16 Apr 2022 02:08:50 GMT
- Title: Theory of Graph Neural Networks: Representation and Learning
- Authors: Stefanie Jegelka
- Abstract summary: Graph Neural Networks (GNNs) have become a popular learning model for prediction tasks on nodes, graphs and configurations of points.
This article summarizes a selection of the emerging theoretical results on approximation and learning properties of widely used message passing GNNs and higher-order GNNs.
- Score: 44.02161831977037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs), neural network architectures targeted to
learning representations of graphs, have become a popular learning model for
prediction tasks on nodes, graphs and configurations of points, with wide
success in practice. This article summarizes a selection of the emerging
theoretical results on approximation and learning properties of widely used
message passing GNNs and higher-order GNNs, focusing on representation,
generalization and extrapolation. Along the way, it summarizes mathematical
connections.
Related papers
- Graph Reasoning Networks [9.18586425686959]
Graph Reasoning Networks (GRNs) is a novel approach to combine the strengths of fixed and learned graph representations and a reasoning module based on a differentiable satisfiability solver.
Results on real-world datasets show comparable performance to GNNs.
Experiments on synthetic datasets demonstrate the potential of the newly proposed method.
arXiv Detail & Related papers (2024-07-08T10:53:49Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - The Expressive Power of Graph Neural Networks: A Survey [9.08607528905173]
We conduct a first survey for models for enhancing expressive power under different forms of definition.
The models are reviewed based on three categories, i.e., Graph feature enhancement, Graph topology enhancement, and GNNs architecture enhancement.
arXiv Detail & Related papers (2023-08-16T09:12:21Z) - A Survey on Graph Classification and Link Prediction based on GNN [11.614366568937761]
This review article delves into the world of graph convolutional neural networks.
It elaborates on the fundamentals of graph convolutional neural networks.
It elucidates the graph neural network models based on attention mechanisms and autoencoders.
arXiv Detail & Related papers (2023-07-03T09:08:01Z) - Graph Neural Networks Provably Benefit from Structural Information: A
Feature Learning Perspective [53.999128831324576]
Graph neural networks (GNNs) have pioneered advancements in graph representation learning.
This study investigates the role of graph convolution within the context of feature learning theory.
arXiv Detail & Related papers (2023-06-24T10:21:11Z) - Knowledge Enhanced Graph Neural Networks for Graph Completion [0.0]
Knowledge Enhanced Graph Neural Networks (KeGNN) is a neuro-symbolic framework for graph completion.
KeGNN consists of a graph neural network as a base upon which knowledge enhancement layers are stacked.
We instantiate KeGNN in conjunction with two state-of-the-art graph neural networks, Graph Convolutional Networks and Graph Attention Networks.
arXiv Detail & Related papers (2023-03-27T07:53:43Z) - Hyperbolic Graph Neural Networks: A Review of Methods and Applications [55.5502008501764]
Graph neural networks generalize conventional neural networks to graph-structured data.
The performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry.
Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution.
arXiv Detail & Related papers (2022-02-28T15:08:48Z) - Analyzing the Performance of Graph Neural Networks with Pipe Parallelism [2.269587850533721]
We focus on Graph Neural Networks (GNNs) that have found great success in tasks such as node or edge classification and link prediction.
New approaches for processing larger networks are needed to advance graph techniques.
We study how GNNs could be parallelized using existing tools and frameworks that are known to be successful in the deep learning community.
arXiv Detail & Related papers (2020-12-20T04:20:38Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.