論文の概要: GitNet: Geometric Prior-based Transformation for Birds-Eye-View
Segmentation
- arxiv url: http://arxiv.org/abs/2204.07733v1
- Date: Sat, 16 Apr 2022 06:46:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-20 09:56:00.469463
- Title: GitNet: Geometric Prior-based Transformation for Birds-Eye-View
Segmentation
- Title(参考訳): gitnet: 鳥眼視セグメンテーションのための幾何学的事前ベース変換
- Authors: Shi Gong, Xiaoqing Ye, Xiao Tan, Jingdong Wang, Errui Ding, Yu Zhou,
Xiang Bai
- Abstract要約: Birds-eye-view (BEV) セマンティックセマンティックセグメンテーションは自動運転に不可欠である。
本稿では,GitNetという新しい2段階のGeometry Preside-based Transformationフレームワークを提案する。
- 参考スコア(独自算出の注目度): 105.19949897812494
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Birds-eye-view (BEV) semantic segmentation is critical for autonomous driving
for its powerful spatial representation ability. It is challenging to estimate
the BEV semantic maps from monocular images due to the spatial gap, since it is
implicitly required to realize both the perspective-to-BEV transformation and
segmentation. We present a novel two-stage Geometry Prior-based Transformation
framework named GitNet, consisting of (i) the geometry-guided pre-alignment and
(ii) ray-based transformer. In the first stage, we decouple the BEV
segmentation into the perspective image segmentation and geometric prior-based
mapping, with explicit supervision by projecting the BEV semantic labels onto
the image plane to learn visibility-aware features and learnable geometry to
translate into BEV space. Second, the pre-aligned coarse BEV features are
further deformed by ray-based transformers to take visibility knowledge into
account. GitNet achieves the leading performance on the challenging nuScenes
and Argoverse Datasets. The code will be publicly available.
- Abstract(参考訳): Birds-eye-view (BEV)セマンティックセマンティックセグメンテーションは、その強力な空間表現能力のために自律運転に不可欠である。
BEV変換とセグメンテーションの両方を実現するために暗黙的に要求されるため、空間的ギャップにより単眼画像からBEV意味マップを推定することは困難である。
本稿では,gitnetという2段階の事前変換フレームワークを提案する。
(i)幾何学的指導による事前調整と
(II)レイベースの変圧器。
第1段階では、BEVセグメンテーションを視点画像のセグメンテーションと幾何学的事前マッピングに分離し、BEVセグメンテーションラベルを画像平面に投影し、可視性を考慮した特徴と学習可能な幾何学を学習して、BEV空間に変換する。
第2に、予め整列された粗いbevの特徴は、視認性の知識を考慮して、レイベースのトランスフォーマによってさらに変形する。
GitNetは、挑戦的なnuScenesとArgoverse Datasetsで主要なパフォーマンスを達成する。
コードは公開される予定だ。
関連論文リスト
- Improving Bird's Eye View Semantic Segmentation by Task Decomposition [42.57351039508863]
元のBEVセグメンテーションタスクを,BEVマップ再構成とRGB-BEV機能アライメントという2つの段階に分割する。
我々のアプローチは、知覚と生成を異なるステップに組み合わせることの複雑さを単純化し、複雑で挑戦的なシーンを効果的に扱うためのモデルを構築します。
論文 参考訳(メタデータ) (2024-04-02T13:19:45Z) - DA-BEV: Unsupervised Domain Adaptation for Bird's Eye View Perception [104.87876441265593]
カメラのみのBird's Eye View (BEV)は3次元空間における環境認識に大きな可能性を示した。
非教師なし領域適応型BEVは、様々な未ラベル対象データから効果的に学習するが、まだ未探索である。
DA-BEVは、画像ビュー機能とBEV機能の相補性を利用して、ドメイン適応型BEV課題に対処する、最初のドメイン適応型カメラのみのBEVフレームワークである。
論文 参考訳(メタデータ) (2024-01-13T04:21:24Z) - U-BEV: Height-aware Bird's-Eye-View Segmentation and Neural Map-based Relocalization [81.76044207714637]
GPS受信が不十分な場合やセンサベースのローカライゼーションが失敗する場合、インテリジェントな車両には再ローカライゼーションが不可欠である。
Bird's-Eye-View (BEV)セグメンテーションの最近の進歩は、局所的な景観の正確な推定を可能にする。
本稿では,U-NetにインスパイアされたアーキテクチャであるU-BEVについて述べる。
論文 参考訳(メタデータ) (2023-10-20T18:57:38Z) - Semi-Supervised Learning for Visual Bird's Eye View Semantic
Segmentation [16.3996408206659]
トレーニング中にラベルのない画像を活用することで性能を向上させるために,視覚的BEVセマンティックセマンティックセマンティックセマンティクスのための新しい半教師付きフレームワークを提案する。
次に、ラベルのないデータを完全に利用する一貫性損失を提案し、セマンティックな予測だけでなく、BEV機能にもモデルを制約する。
nuScenesとArgoverseデータセットの実験により、我々のフレームワークは予測精度を効果的に向上できることが示された。
論文 参考訳(メタデータ) (2023-08-28T12:23:36Z) - Bird's-Eye-View Scene Graph for Vision-Language Navigation [85.72725920024578]
視覚言語ナビゲーション(VLN)は、人間の指示に従って3D環境をナビゲートするエージェントである。
室内環境のシーンレイアウトと幾何学的手がかりを符号化するために,多段階のBEV表現を利用するBEVシーングラフ(BSG)を提案する。
BSGに基づいて、エージェントは、ローカルなBEVグリッドレベル決定スコアとグローバルなグラフレベル決定スコアを予測し、パノラマビューのサブビュー選択スコアと組み合わせる。
論文 参考訳(メタデータ) (2023-08-09T07:48:20Z) - FB-BEV: BEV Representation from Forward-Backward View Transformations [131.11787050205697]
本稿では,Bird-Eye-View (BEV) 表現のためのビュートランスフォーメーションモジュール (VTM) を提案する。
我々は提案したモジュールをFB-BEVでインスタンス化し、nuScenesテストセット上で62.4%のNDSの最先端結果を達成する。
論文 参考訳(メタデータ) (2023-08-04T10:26:55Z) - Geometric-aware Pretraining for Vision-centric 3D Object Detection [77.7979088689944]
GAPretrainと呼ばれる新しい幾何学的事前学習フレームワークを提案する。
GAPretrainは、複数の最先端検出器に柔軟に適用可能なプラグアンドプレイソリューションとして機能する。
BEVFormer法を用いて, nuScenes val の 46.2 mAP と 55.5 NDS を実現し, それぞれ 2.7 と 2.1 点を得た。
論文 参考訳(メタデータ) (2023-04-06T14:33:05Z) - ViT-BEVSeg: A Hierarchical Transformer Network for Monocular
Birds-Eye-View Segmentation [2.70519393940262]
本研究では,バードアイビュー (BEV) マップを生成するために,視覚変換器 (ViT) をバックボーンアーキテクチャとして用いることを評価する。
我々のネットワークアーキテクチャであるViT-BEVSegは、入力画像のマルチスケール表現を生成するために標準視覚変換器を使用している。
我々は、最先端のアプローチと比較してかなり改善されたnuScenesデータセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2022-05-31T10:18:36Z) - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View
Images [4.449481309681663]
本研究では,Bird's-Eye-View (BEV) マップにおいて,高密度パノプティックセグメンテーションマップを直接予測するエンド・ツー・エンドの学習手法を提案する。
私たちのアーキテクチャはトップダウンパラダイムに従っており、新しい高密度トランスモジュールを組み込んでいます。
我々は、FV-BEV変換の感度を数学的に定式化し、BEV空間のピクセルをインテリジェントに重み付けすることができる。
論文 参考訳(メタデータ) (2021-08-06T17:59:11Z) - BEV-Seg: Bird's Eye View Semantic Segmentation Using Geometry and
Semantic Point Cloud [21.29622194272066]
我々は,BEVにおける画素単位のセマンティックセマンティックセマンティックセマンティクスを予測するタスクである,鳥の目の意味セマンティクスセマンティクスに着目した。
このタスクには、サイドビューからバードビューへのビュー変換と、未確認領域への学習の移行という2つの大きな課題がある。
新たな2段階認識パイプラインは,画素深度を明示的に予測し,効率よく画素セマンティクスと組み合わせる。
論文 参考訳(メタデータ) (2020-06-19T23:30:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。