論文の概要: ViT-BEVSeg: A Hierarchical Transformer Network for Monocular
Birds-Eye-View Segmentation
- arxiv url: http://arxiv.org/abs/2205.15667v1
- Date: Tue, 31 May 2022 10:18:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-01 22:19:55.635597
- Title: ViT-BEVSeg: A Hierarchical Transformer Network for Monocular
Birds-Eye-View Segmentation
- Title(参考訳): vit-bevseg:単眼鳥眼セグメンテーションのための階層的トランスフォーマーネットワーク
- Authors: Pramit Dutta, Ganesh Sistu, Senthil Yogamani, Edgar Galv\'an and John
McDonald
- Abstract要約: 本研究では,バードアイビュー (BEV) マップを生成するために,視覚変換器 (ViT) をバックボーンアーキテクチャとして用いることを評価する。
我々のネットワークアーキテクチャであるViT-BEVSegは、入力画像のマルチスケール表現を生成するために標準視覚変換器を使用している。
我々は、最先端のアプローチと比較してかなり改善されたnuScenesデータセットに対するアプローチを評価した。
- 参考スコア(独自算出の注目度): 2.70519393940262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating a detailed near-field perceptual model of the environment is an
important and challenging problem in both self-driving vehicles and autonomous
mobile robotics. A Bird Eye View (BEV) map, providing a panoptic
representation, is a commonly used approach that provides a simplified 2D
representation of the vehicle surroundings with accurate semantic level
segmentation for many downstream tasks. Current state-of-the art approaches to
generate BEV-maps employ a Convolutional Neural Network (CNN) backbone to
create feature-maps which are passed through a spatial transformer to project
the derived features onto the BEV coordinate frame. In this paper, we evaluate
the use of vision transformers (ViT) as a backbone architecture to generate BEV
maps. Our network architecture, ViT-BEVSeg, employs standard vision
transformers to generate a multi-scale representation of the input image. The
resulting representation is then provided as an input to a spatial transformer
decoder module which outputs segmentation maps in the BEV grid. We evaluate our
approach on the nuScenes dataset demonstrating a considerable improvement in
the performance relative to state-of-the-art approaches.
- Abstract(参考訳): 環境の詳細な近接場知覚モデルの生成は、自動運転車と自律移動ロボットの両方において重要かつ困難な問題である。
バードアイビュー(英: Bird Eye View、BEV)は、多くのダウンストリームタスクに対して正確なセマンティックレベルセグメンテーションを備えた、車両を取り巻く2D表現を単純化する手法である。
現在のBEVマップ生成技術では、畳み込みニューラルネットワーク(CNN)のバックボーンを使用し、空間トランスフォーマーを介して派生した特徴をBEV座標フレームに投影する特徴マップを作成する。
本稿では、BEVマップを生成するためのバックボーンアーキテクチャとして、視覚変換器(ViT)の使用を評価する。
我々のネットワークアーキテクチャであるViT-BEVSegは、入力画像のマルチスケール表現を生成するために標準視覚変換器を使用している。
得られた表現は、BEVグリッド内のセグメントマップを出力する空間変換器デコーダモジュールへの入力として提供される。
我々は,最新技術に対する性能改善を示すnuScenesデータセットに対するアプローチを評価した。
関連論文リスト
- OE-BevSeg: An Object Informed and Environment Aware Multimodal Framework for Bird's-eye-view Vehicle Semantic Segmentation [57.2213693781672]
Bird's-eye-view (BEV)セマンティックセマンティックセグメンテーションは自律運転システムにおいて重要である。
本稿では,BEVセグメンテーション性能を向上させるエンドツーエンドマルチモーダルフレームワークであるOE-BevSegを提案する。
提案手法は,車両セグメンテーションのためのnuScenesデータセットにおいて,最先端の成果を大きなマージンで達成する。
論文 参考訳(メタデータ) (2024-07-18T03:48:22Z) - BEV-Locator: An End-to-end Visual Semantic Localization Network Using
Multi-View Images [13.258689143949912]
マルチビューカメラ画像を用いたエンドツーエンドの視覚的セマンティックローカライゼーションニューラルネットワークを提案する。
BEV-Locatorは、多目的シナリオ下での車両のポーズを推定することができる。
実験では, 平均絶対誤差が0.052m, 0.135m, 0.251$circ$, 横方向, 縦方向の翻訳, 方向角の程度で満足な精度を報告した。
論文 参考訳(メタデータ) (2022-11-27T20:24:56Z) - Monocular BEV Perception of Road Scenes via Front-to-Top View Projection [57.19891435386843]
本稿では,鳥の目視で道路配置と車両占有率によって形成された局所地図を再構築する新しい枠組みを提案する。
我々のモデルは1つのGPU上で25FPSで動作し、リアルタイムパノラマHDマップの再構築に有効である。
論文 参考訳(メタデータ) (2022-11-15T13:52:41Z) - CoBEVT: Cooperative Bird's Eye View Semantic Segmentation with Sparse
Transformers [36.838065731893735]
CoBEVTは、BEVマップ予測を協調的に生成できる最初の汎用マルチエージェント認識フレームワークである。
CoBEVTは協調的BEVセマンティックセグメンテーションのための最先端性能を実現する。
論文 参考訳(メタデータ) (2022-07-05T17:59:28Z) - LaRa: Latents and Rays for Multi-Camera Bird's-Eye-View Semantic
Segmentation [43.12994451281451]
複数のカメラからの車両セマンティックセグメンテーションのための効率的なエンコーダデコーダである'LaRa'を提案する。
我々のアプローチは、複数のセンサーにまたがる情報を、コンパクトでリッチな潜在表現の集合に集約するクロスアテンションシステムを用いています。
論文 参考訳(メタデータ) (2022-06-27T13:37:50Z) - GitNet: Geometric Prior-based Transformation for Birds-Eye-View
Segmentation [105.19949897812494]
Birds-eye-view (BEV) セマンティックセマンティックセグメンテーションは自動運転に不可欠である。
本稿では,GitNetという新しい2段階のGeometry Preside-based Transformationフレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-16T06:46:45Z) - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View
Images [4.449481309681663]
本研究では,Bird's-Eye-View (BEV) マップにおいて,高密度パノプティックセグメンテーションマップを直接予測するエンド・ツー・エンドの学習手法を提案する。
私たちのアーキテクチャはトップダウンパラダイムに従っており、新しい高密度トランスモジュールを組み込んでいます。
我々は、FV-BEV変換の感度を数学的に定式化し、BEV空間のピクセルをインテリジェントに重み付けすることができる。
論文 参考訳(メタデータ) (2021-08-06T17:59:11Z) - ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias [76.16156833138038]
コンボリューション, ie, ViTAEから内在性IBを探索するビジョントランスフォーマーを提案する。
ViTAEはいくつかの空間ピラミッド縮小モジュールを備えており、入力イメージをリッチなマルチスケールコンテキストでトークンに埋め込む。
各トランス層では、ViTAEはマルチヘッド自己保持モジュールと平行な畳み込みブロックを持ち、その特徴は融合されフィードフォワードネットワークに供給される。
論文 参考訳(メタデータ) (2021-06-07T05:31:06Z) - Analogous to Evolutionary Algorithm: Designing a Unified Sequence Model [58.17021225930069]
実演的進化アルゴリズム(EA)と類似した視覚変換器の合理性について説明する。
我々は、より効率的なEATモデルを提案し、様々なタスクに柔軟に対処するタスク関連ヘッドを設計する。
近年のビジョントランスに比べて,イメージネット分類作業における最先端の成果が得られている。
論文 参考訳(メタデータ) (2021-05-31T16:20:03Z) - Visual Saliency Transformer [127.33678448761599]
RGBとRGB-Dの液状物体検出(SOD)のための、純粋な変圧器であるVST(Visual Saliency Transformer)に基づく新しい統一モデルを開発しました。
イメージパッチを入力として取り、トランスフォーマーを利用してイメージパッチ間のグローバルコンテキストを伝搬する。
実験結果から,RGBとRGB-D SODのベンチマークデータセットにおいて,本モデルが既存の最新結果を上回っていることが示された。
論文 参考訳(メタデータ) (2021-04-25T08:24:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。