論文の概要: SETTI: A Self-supervised Adversarial Malware Detection Architecture in
an IoT Environment
- arxiv url: http://arxiv.org/abs/2204.07772v1
- Date: Sat, 16 Apr 2022 10:10:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-19 16:32:41.744555
- Title: SETTI: A Self-supervised Adversarial Malware Detection Architecture in
an IoT Environment
- Title(参考訳): SETTI: IoT環境における自己管理型対向マルウェア検出アーキテクチャ
- Authors: Marjan Golmaryami, Rahim Taheri, Zahra Pooranian, Mohammad Shojafar,
Pei Xiao
- Abstract要約: 本稿では,モノのインターネットネットワーク(SETTI)におけるマルウェアを検出するための,敵の自己管理型アーキテクチャを提案する。
SETTIアーキテクチャでは,Self-MDS,GSelf-MDS,ASelf-MDSの3つの自己教師型攻撃手法を設計する。
攻撃と防御のアルゴリズムを検証するために、最近の2つのIoTデータセット、IoT23とNBIoTで実験を行います。
- 参考スコア(独自算出の注目度): 20.586904296213007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, malware detection has become an active research topic in the
area of Internet of Things (IoT) security. The principle is to exploit
knowledge from large quantities of continuously generated malware. Existing
algorithms practice available malware features for IoT devices and lack
real-time prediction behaviors. More research is thus required on malware
detection to cope with real-time misclassification of the input IoT data.
Motivated by this, in this paper we propose an adversarial self-supervised
architecture for detecting malware in IoT networks, SETTI, considering samples
of IoT network traffic that may not be labeled. In the SETTI architecture, we
design three self-supervised attack techniques, namely Self-MDS, GSelf-MDS and
ASelf-MDS. The Self-MDS method considers the IoT input data and the adversarial
sample generation in real-time. The GSelf-MDS builds a generative adversarial
network model to generate adversarial samples in the self-supervised structure.
Finally, ASelf-MDS utilizes three well-known perturbation sample techniques to
develop adversarial malware and inject it over the self-supervised
architecture. Also, we apply a defence method to mitigate these attacks, namely
adversarial self-supervised training to protect the malware detection
architecture against injecting the malicious samples. To validate the attack
and defence algorithms, we conduct experiments on two recent IoT datasets:
IoT23 and NBIoT. Comparison of the results shows that in the IoT23 dataset, the
Self-MDS method has the most damaging consequences from the attacker's point of
view by reducing the accuracy rate from 98% to 74%. In the NBIoT dataset, the
ASelf-MDS method is the most devastating algorithm that can plunge the accuracy
rate from 98% to 77%.
- Abstract(参考訳): 近年,IoT(Internet of Things)セキュリティ分野において,マルウェア検出が活発に研究されている。
原則は、連続的に生成される大量のマルウェアから知識を活用することである。
既存のアルゴリズムはIoTデバイスで利用可能なマルウェア機能を実践しており、リアルタイムの予測動作がない。
したがって、入力されたIoTデータのリアルタイムな誤分類に対処するためには、マルウェア検出に関するさらなる研究が必要である。
そこで本稿では,ラベル付けされていないIoTネットワークトラフィックのサンプルを考慮し,IoTネットワーク,SETTIにおけるマルウェアを検出するための,逆向きの自己管理アーキテクチャを提案する。
SETTIアーキテクチャでは,Self-MDS,GSelf-MDS,ASelf-MDSの3つの自己監視攻撃手法を設計する。
Self-MDS法は,IoT入力データと逆サンプル生成をリアルタイムに検討する。
gself-mdsは、自己教師構造において逆サンプルを生成するための生成的逆ネットワークモデルを構築する。
最後に、ASelf-MDSは3つの有名な摂動サンプル技術を用いて、敵のマルウェアを開発し、自己管理アーキテクチャ上で注入する。
また,これらの攻撃を緩和するための防御手法,すなわち,悪意のあるサンプルの注入からマルウェア検出アーキテクチャを保護するために,敵の自己監視トレーニングを適用する。
攻撃と防御のアルゴリズムを検証するために、最近の2つのIoTデータセット、IoT23とNBIoTの実験を行います。
結果を比較すると、IoT23データセットでは、Self-MDSメソッドは攻撃者の視点で最も有害な結果をもたらし、精度を98%から74%に下げている。
NBIoTデータセットでは、ASelf-MDS法が最も破壊的なアルゴリズムであり、精度を98%から77%に下げることができる。
関連論文リスト
- MDHP-Net: Detecting Injection Attacks on In-vehicle Network using Multi-Dimensional Hawkes Process and Temporal Model [44.356505647053716]
本稿では、インジェクションアタックとして知られる特定のタイプのサイバーアタックについて考察する。
これらのインジェクション攻撃は時間の経過とともに効果があり、徐々にネットワークトラフィックを操作し、車両の正常な機能を破壊している。
本稿では,MDHP-LSTMブロックに最適なMDHPパラメータを組み込んだインジェクション攻撃検出器MDHP-Netを提案する。
論文 参考訳(メタデータ) (2024-11-15T15:05:01Z) - Enhancing IoT Malware Detection through Adaptive Model Parallelism and Resource Optimization [0.6856683556201506]
本研究では,IoTデバイスに適したマルウェア検出手法を提案する。
リソースの可用性、進行中のワークロード、通信コストに基づいて、マルウェア検出タスクはデバイス上で動的に割り当てられるか、隣接するIoTノードにオフロードされる。
実験結果から,本手法はデバイス上での推測に比べて9.8倍の高速化を実現していることがわかった。
論文 参考訳(メタデータ) (2024-04-12T20:51:25Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - The Adversarial Implications of Variable-Time Inference [47.44631666803983]
本稿では,攻撃対象のMLモデルの予測を後処理するアルゴリズムの実行時間を簡単に計測する,新たなサイドチャネルを利用するアプローチを提案する。
我々は,物体検出装置の動作において重要な役割を果たす非最大抑圧(NMS)アルゴリズムからの漏れを調査する。
我々は、YOLOv3検出器に対する攻撃を実演し、タイミングリークを利用して、逆例を用いてオブジェクト検出を回避し、データセット推論を行う。
論文 参考訳(メタデータ) (2023-09-05T11:53:17Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Intrusion Detection in Internet of Things using Convolutional Neural
Networks [4.718295605140562]
CNNを用いたIoTデバイスへの侵入攻撃に対する新しい解決策を提案する。
データは畳み込み操作として符号化され、時間とともにセンサーデータからパターンをキャプチャする。
実験の結果, LSTMを用いたベースラインと比較して, 真正率, 偽正率ともに有意な改善が認められた。
論文 参考訳(メタデータ) (2022-11-18T07:27:07Z) - Unsupervised Ensemble Based Deep Learning Approach for Attack Detection
in IoT Network [0.0]
モノのインターネット(Internet of Things, IoT)は、デバイスやものをインターネット上でコントロールすることによって、生活を変えてきた。
IoTネットワークをダウンさせるために、攻撃者はこれらのデバイスを使用してさまざまなネットワーク攻撃を行うことができる。
本稿では,非ラベルデータセットからIoTネットワークにおける新たな,あるいは未知の攻撃を検出可能な,教師なしアンサンブル学習モデルを開発した。
論文 参考訳(メタデータ) (2022-07-16T11:12:32Z) - Semi-supervised Variational Temporal Convolutional Network for IoT
Communication Multi-anomaly Detection [3.3659034873495632]
モノのインターネット(IoT)デバイスは、巨大な通信ネットワークを構築するために構築されます。
これらのデバイスは実際には安全ではないため、通信ネットワークが攻撃者によって露出されることを意味する。
本稿では,IoT 複数異常検出のための半監視ネットワーク SS-VTCN を提案する。
論文 参考訳(メタデータ) (2021-04-05T08:51:24Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - IoT Behavioral Monitoring via Network Traffic Analysis [0.45687771576879593]
この論文は、IoTのネットワーク行動パターンをプロファイリングする技術を開発する上で、私たちの努力の成果である。
我々は、交通パターンの属性で訓練された、堅牢な機械学習ベースの推論エンジンを開発する。
99%以上の精度で28台のIoTデバイスのリアルタイム分類を実演する。
論文 参考訳(メタデータ) (2020-01-28T23:13:12Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。