ART: Artifact Removal Transformer for Reconstructing Noise-Free Multichannel Electroencephalographic Signals
- URL: http://arxiv.org/abs/2409.07326v1
- Date: Wed, 11 Sep 2024 15:05:40 GMT
- Title: ART: Artifact Removal Transformer for Reconstructing Noise-Free Multichannel Electroencephalographic Signals
- Authors: Chun-Hsiang Chuang, Kong-Yi Chang, Chih-Sheng Huang, Anne-Mei Bessas,
- Abstract summary: Artifact removal in electroencephalography (EEG) significantly impacts neuroscientific analysis and brain-computer interface (BCI) performance.
This study presents an innovative EEG denoising model employing transformer architecture to adeptly capture the transient millisecond-scale dynamics characteristic of EEG signals.
Our evaluations confirm that ART surpasses other deep-learning-based artifact removal methods, setting a new benchmark in EEG signal processing.
- Score: 0.10499611180329801
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artifact removal in electroencephalography (EEG) is a longstanding challenge that significantly impacts neuroscientific analysis and brain-computer interface (BCI) performance. Tackling this problem demands advanced algorithms, extensive noisy-clean training data, and thorough evaluation strategies. This study presents the Artifact Removal Transformer (ART), an innovative EEG denoising model employing transformer architecture to adeptly capture the transient millisecond-scale dynamics characteristic of EEG signals. Our approach offers a holistic, end-to-end denoising solution for diverse artifact types in multichannel EEG data. We enhanced the generation of noisy-clean EEG data pairs using an independent component analysis, thus fortifying the training scenarios critical for effective supervised learning. We performed comprehensive validations using a wide range of open datasets from various BCI applications, employing metrics like mean squared error and signal-to-noise ratio, as well as sophisticated techniques such as source localization and EEG component classification. Our evaluations confirm that ART surpasses other deep-learning-based artifact removal methods, setting a new benchmark in EEG signal processing. This advancement not only boosts the accuracy and reliability of artifact removal but also promises to catalyze further innovations in the field, facilitating the study of brain dynamics in naturalistic environments.
Related papers
- Encoder with the Empirical Mode Decomposition (EMD) to remove muscle artefacts from EEG signal [0.0]
This paper introduces a novel method for effectively removing artifacts from EEG signals by combining the Empirical Mode Decomposition (EMD) method with a machine learning architecture.
arXiv Detail & Related papers (2024-09-22T19:22:22Z) - EEGDiR: Electroencephalogram denoising network for temporal information storage and global modeling through Retentive Network [11.491355463353731]
We introduce the Retnet from natural language processing to EEG denoising.
Direct application of Retnet to EEG denoising is unfeasible due to the one-dimensional nature of EEG signals.
We propose the signal embedding method, transforming one-dimensional EEG signals into two dimensions for use as network inputs.
arXiv Detail & Related papers (2024-03-20T15:04:21Z) - CSLP-AE: A Contrastive Split-Latent Permutation Autoencoder Framework
for Zero-Shot Electroencephalography Signal Conversion [49.1574468325115]
A key aim in EEG analysis is to extract the underlying neural activation (content) as well as to account for the individual subject variability (style)
Inspired by recent advancements in voice conversion technologies, we propose a novel contrastive split-latent permutation autoencoder (CSLP-AE) framework that directly optimize for EEG conversion.
arXiv Detail & Related papers (2023-11-13T22:46:43Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
This paper proposes a knowledge-driven cross-view contrastive learning framework (KDC2) to extract effective representations from EEG with limited labels.
The KDC2 method creates scalp and neural views of EEG signals, simulating the internal and external representation of brain activity.
By modeling prior neural knowledge based on neural information consistency theory, the proposed method extracts invariant and complementary neural knowledge to generate combined representations.
arXiv Detail & Related papers (2023-09-21T08:53:51Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Exploiting Multiple EEG Data Domains with Adversarial Learning [20.878816519635304]
We propose an adversarial inference approach to learn data-source invariant representations in this context.
We unify EEG recordings from different source domains (i.e., emotion recognition SEED, SEED-IV, DEAP, DREAMER)
arXiv Detail & Related papers (2022-04-16T11:09:20Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - IC-U-Net: A U-Net-based Denoising Autoencoder Using Mixtures of
Independent Components for Automatic EEG Artifact Removal [2.454595178503407]
It is imperative to develop a practical and reliable artifact removal method to prevent misinterpretations of neural signals.
This study developed a new artifact removal method, IC-U-Net, which is based on the U-Net architecture for removing pervasive EEG artifacts.
arXiv Detail & Related papers (2021-11-19T03:45:53Z) - GANSER: A Self-supervised Data Augmentation Framework for EEG-based
Emotion Recognition [15.812231441367022]
We propose a novel data augmentation framework, namely Generative Adversarial Network-based Self-supervised Data Augmentation (GANSER)
As the first to combine adversarial training with self-supervised learning for EEG-based emotion recognition, the proposed framework can generate high-quality simulated EEG samples.
A transformation function is employed to mask parts of EEG signals and force the generator to synthesize potential EEG signals based on the remaining parts.
arXiv Detail & Related papers (2021-09-07T14:42:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.