論文の概要: Beyond L1: Faster and Better Sparse Models with skglm
- arxiv url: http://arxiv.org/abs/2204.07826v1
- Date: Sat, 16 Apr 2022 15:49:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-19 14:05:55.434640
- Title: Beyond L1: Faster and Better Sparse Models with skglm
- Title(参考訳): beyond l1: skglmによる高速でスパースなモデル
- Authors: Quentin Bertrand and Quentin Klopfenstein and Pierre-Antoine Bannier
and Gauthier Gidel and Mathurin Massias
- Abstract要約: 凸や非可分なペナルティを持つ一般化されたモデルを推定する新しい高速アルゴリズムを提案する。
我々のアルゴリズムは座標座標の降下に頼って数百万のサンプルと特徴を解くことができる。
- 参考スコア(独自算出の注目度): 13.915042607927564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new fast algorithm to estimate any sparse generalized linear
model with convex or non-convex separable penalties. Our algorithm is able to
solve problems with millions of samples and features in seconds, by relying on
coordinate descent, working sets and Anderson acceleration. It handles
previously unaddressed models, and is extensively shown to improve state-of-art
algorithms. We provide a flexible, scikit-learn compatible package, which
easily handles customized datafits and penalties.
- Abstract(参考訳): 凸あるいは非凸分離ペナルティを持つ疎一般化線形モデルを推定するための新しい高速アルゴリズムを提案する。
我々のアルゴリズムは、座標降下、ワーキングセット、アンダーソン加速度に頼って、数百万のサンプルと特徴を数秒で解くことができる。
未対応のモデルを処理し、最先端のアルゴリズムを改善するために広く示されている。
私たちは、カスタマイズしたdatafitsとペナルティを簡単に処理できるフレキシブルでscikit-learn互換パッケージを提供しています。
関連論文リスト
- A Fast and Scalable Pathwise-Solver for Group Lasso and Elastic Net Penalized Regression via Block-Coordinate Descent [46.040036610482666]
我々は,群ラッソと群弾性ネットを解くために,ブロック座標降下に基づく高速でスケーラブルなアルゴリズムを開発した。
我々のベンチマークによると、我々のパッケージはシミュレーションと実際のデータセットの両方で、次の最速のパッケージよりも3倍から10倍高速である。
論文 参考訳(メタデータ) (2024-05-14T14:10:48Z) - Learning the Positions in CountSketch [49.57951567374372]
本稿では,まずランダムなスケッチ行列に乗じてデータを圧縮し,最適化問題を高速に解くスケッチアルゴリズムについて検討する。
本研究では,ゼロでないエントリの位置を最適化する学習ベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-11T07:28:35Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
我々は、制約付き最適化のための一階アルゴリズムと非滑らかなシステムの間で、新しい一階アルゴリズムのクラスを設計する。
これらのアルゴリズムの重要な性質は、制約がスパース変数の代わりに速度で表されることである。
論文 参考訳(メタデータ) (2023-02-01T08:50:48Z) - Fast and Robust Non-Rigid Registration Using Accelerated
Majorization-Minimization [35.66014845211251]
非剛性登録は、ターゲット形状と整合する非剛性な方法でソース形状を変形させるが、コンピュータビジョンにおける古典的な問題である。
既存のメソッドは通常$ell_p$型ロバストノルムを使用してアライメントエラーを測定し、変形の滑らかさを規則化する。
本稿では、アライメントと正規化のためのグローバルなスムーズなロバストノルムに基づく、ロバストな非剛体登録のための定式化を提案する。
論文 参考訳(メタデータ) (2022-06-07T16:00:33Z) - Minimax Optimal Quantization of Linear Models: Information-Theoretic
Limits and Efficient Algorithms [59.724977092582535]
測定から学習した線形モデルの定量化の問題を考える。
この設定の下では、ミニマックスリスクに対する情報理論の下限を導出する。
本稿では,2層ReLUニューラルネットワークに対して,提案手法と上界を拡張可能であることを示す。
論文 参考訳(メタデータ) (2022-02-23T02:39:04Z) - Spike-and-Slab Generalized Additive Models and Scalable Algorithms for
High-Dimensional Data [0.0]
本稿では,高次元データに対応するため,階層型一般化加法モデル(GAM)を提案する。
曲線の適切な縮退と滑らか化関数線型空間と非線形空間の分離に対する平滑化ペナルティを考察する。
2つの決定論的アルゴリズム、EM-Coordinate Descent と EM-Iterative Weighted Least Squares は異なるユーティリティ向けに開発された。
論文 参考訳(メタデータ) (2021-10-27T14:11:13Z) - Finding Geometric Models by Clustering in the Consensus Space [61.65661010039768]
本稿では,未知数の幾何学的モデル,例えばホモグラフィーを求めるアルゴリズムを提案する。
複数の幾何モデルを用いることで精度が向上するアプリケーションをいくつか提示する。
これには、複数の一般化されたホモグラフからのポーズ推定、高速移動物体の軌道推定が含まれる。
論文 参考訳(メタデータ) (2021-03-25T14:35:07Z) - Slowly Varying Regression under Sparsity [5.22980614912553]
本稿では, 緩やかな過度回帰の枠組みを提示し, 回帰モデルが緩やかかつスパースな変動を示すようにした。
本稿では,バイナリ凸アルゴリズムとして再構成する手法を提案する。
結果として得られたモデルは、様々なデータセット間で競合する定式化よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-02-22T04:51:44Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
本稿では,各ステップごとに1つのデータポイントしか必要としない2つの単一スケールシングルループアルゴリズムを提案する。
本研究の結果は, 同時一次および二重側収束の形で表される。
論文 参考訳(メタデータ) (2020-08-23T20:36:49Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
乗算重み更新法に基づいて,Klivans と Meka のアルゴリズムを適用した。
アルゴリズムは、文献の他のものと質的に類似したサンプル複雑性境界を楽しみます。
ランタイムが低い$O(mp2)$で、$m$サンプルと$p$ノードの場合には、簡単にオンライン形式で実装できる。
論文 参考訳(メタデータ) (2020-02-20T10:50:58Z) - Learning Sparse Classifiers: Continuous and Mixed Integer Optimization
Perspectives [10.291482850329892]
混合整数計画法(MIP)は、(最適に) $ell_0$-正規化回帰問題を解くために用いられる。
数分で5万ドルの機能を処理できる正確なアルゴリズムと、$papprox6$でインスタンスに対処できる近似アルゴリズムの2つのクラスを提案する。
さらに,$ell$-regularizedsに対する新しい推定誤差境界を提案する。
論文 参考訳(メタデータ) (2020-01-17T18:47:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。