MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral
Reconstruction
- URL: http://arxiv.org/abs/2204.07908v1
- Date: Sun, 17 Apr 2022 02:39:32 GMT
- Title: MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral
Reconstruction
- Authors: Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Zhang, Hanspeter
Pfister, Radu Timofte, Luc Van Gool
- Abstract summary: We propose a novel Transformer-based method, Multi-stage Spectral-wise Transformer (MST++) for efficient spectral reconstruction.
In the NTIRE 2022 Spectral Reconstruction Challenge, our approach won the First place.
- Score: 148.26195175240923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing leading methods for spectral reconstruction (SR) focus on designing
deeper or wider convolutional neural networks (CNNs) to learn the end-to-end
mapping from the RGB image to its hyperspectral image (HSI). These CNN-based
methods achieve impressive restoration performance while showing limitations in
capturing the long-range dependencies and self-similarity prior. To cope with
this problem, we propose a novel Transformer-based method, Multi-stage
Spectral-wise Transformer (MST++), for efficient spectral reconstruction. In
particular, we employ Spectral-wise Multi-head Self-attention (S-MSA) that is
based on the HSI spatially sparse while spectrally self-similar nature to
compose the basic unit, Spectral-wise Attention Block (SAB). Then SABs build up
Single-stage Spectral-wise Transformer (SST) that exploits a U-shaped structure
to extract multi-resolution contextual information. Finally, our MST++,
cascaded by several SSTs, progressively improves the reconstruction quality
from coarse to fine. Comprehensive experiments show that our MST++
significantly outperforms other state-of-the-art methods. In the NTIRE 2022
Spectral Reconstruction Challenge, our approach won the First place. Code and
pre-trained models are publicly available at
https://github.com/caiyuanhao1998/MST-plus-plus.
Related papers
- Coarse-Fine Spectral-Aware Deformable Convolution For Hyperspectral Image Reconstruction [15.537910100051866]
We study the inverse problem of Coded Aperture Snapshot Spectral Imaging (CASSI)
We propose Coarse-Fine Spectral-Aware Deformable Convolution Network (CFSDCN)
Our CFSDCN significantly outperforms previous state-of-the-art (SOTA) methods on both simulated and real HSI datasets.
arXiv Detail & Related papers (2024-06-18T15:15:12Z) - DMSSN: Distilled Mixed Spectral-Spatial Network for Hyperspectral Salient Object Detection [12.823338405434244]
Hyperspectral salient object detection (HSOD) has exhibited remarkable promise across various applications.
Previous methods insufficiently harness the inherent distinctive attributes of hyperspectral images (HSIs) during the feature extraction process.
We propose Distilled Mixed Spectral-Spatial Network (DMSSN), comprising a Distilled Spectral-Spatial Transformer (MSST)
We have created a large-scale HSOD dataset, HSOD-BIT, to tackle the issue of data scarcity in this field.
arXiv Detail & Related papers (2024-03-31T14:04:57Z) - SpectralGPT: Spectral Remote Sensing Foundation Model [60.023956954916414]
A universal RS foundation model, named SpectralGPT, is purpose-built to handle spectral RS images using a novel 3D generative pretrained transformer (GPT)
Compared to existing foundation models, SpectralGPT accommodates input images with varying sizes, resolutions, time series, and regions in a progressive training fashion, enabling full utilization of extensive RS big data.
Our evaluation highlights significant performance improvements with pretrained SpectralGPT models, signifying substantial potential in advancing spectral RS big data applications within the field of geoscience.
arXiv Detail & Related papers (2023-11-13T07:09:30Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - SST-ReversibleNet: Reversible-prior-based Spectral-Spatial Transformer
for Efficient Hyperspectral Image Reconstruction [15.233185887461826]
A novel framework called the reversible-prior-based method is proposed.
ReversibleNet significantly outperforms state-of-the-art methods on simulated and real HSI datasets.
arXiv Detail & Related papers (2023-05-06T14:01:02Z) - Degradation-Aware Unfolding Half-Shuffle Transformer for Spectral
Compressive Imaging [142.11622043078867]
We propose a principled Degradation-Aware Unfolding Framework (DAUF) that estimates parameters from the compressed image and physical mask, and then uses these parameters to control each iteration.
By plugging HST into DAUF, we establish the first Transformer-based deep unfolding method, Degradation-Aware Unfolding Half-Shuffle Transformer (DAUHST) for HSI reconstruction.
arXiv Detail & Related papers (2022-05-20T11:37:44Z) - Coarse-to-Fine Sparse Transformer for Hyperspectral Image Reconstruction [138.04956118993934]
We propose a novel Transformer-based method, coarse-to-fine sparse Transformer (CST)
CST embedding HSI sparsity into deep learning for HSI reconstruction.
In particular, CST uses our proposed spectra-aware screening mechanism (SASM) for coarse patch selecting. Then the selected patches are fed into our customized spectra-aggregation hashing multi-head self-attention (SAH-MSA) for fine pixel clustering and self-similarity capturing.
arXiv Detail & Related papers (2022-03-09T16:17:47Z) - Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image
Reconstruction [127.20208645280438]
Hyperspectral image (HSI) reconstruction aims to recover the 3D spatial-spectral signal from a 2D measurement.
Modeling the inter-spectra interactions is beneficial for HSI reconstruction.
Mask-guided Spectral-wise Transformer (MST) proposes a novel framework for HSI reconstruction.
arXiv Detail & Related papers (2021-11-15T16:59:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.