DMSSN: Distilled Mixed Spectral-Spatial Network for Hyperspectral Salient Object Detection
- URL: http://arxiv.org/abs/2404.00694v1
- Date: Sun, 31 Mar 2024 14:04:57 GMT
- Title: DMSSN: Distilled Mixed Spectral-Spatial Network for Hyperspectral Salient Object Detection
- Authors: Haolin Qin, Tingfa Xu, Peifu Liu, Jingxuan Xu, Jianan Li,
- Abstract summary: Hyperspectral salient object detection (HSOD) has exhibited remarkable promise across various applications.
Previous methods insufficiently harness the inherent distinctive attributes of hyperspectral images (HSIs) during the feature extraction process.
We propose Distilled Mixed Spectral-Spatial Network (DMSSN), comprising a Distilled Spectral-Spatial Transformer (MSST)
We have created a large-scale HSOD dataset, HSOD-BIT, to tackle the issue of data scarcity in this field.
- Score: 12.823338405434244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral salient object detection (HSOD) has exhibited remarkable promise across various applications, particularly in intricate scenarios where conventional RGB-based approaches fall short. Despite the considerable progress in HSOD method advancements, two critical challenges require immediate attention. Firstly, existing hyperspectral data dimension reduction techniques incur a loss of spectral information, which adversely affects detection accuracy. Secondly, previous methods insufficiently harness the inherent distinctive attributes of hyperspectral images (HSIs) during the feature extraction process. To address these challenges, we propose a novel approach termed the Distilled Mixed Spectral-Spatial Network (DMSSN), comprising a Distilled Spectral Encoding process and a Mixed Spectral-Spatial Transformer (MSST) feature extraction network. The encoding process utilizes knowledge distillation to construct a lightweight autoencoder for dimension reduction, striking a balance between robust encoding capabilities and low computational costs. The MSST extracts spectral-spatial features through multiple attention head groups, collaboratively enhancing its resistance to intricate scenarios. Moreover, we have created a large-scale HSOD dataset, HSOD-BIT, to tackle the issue of data scarcity in this field and meet the fundamental data requirements of deep network training. Extensive experiments demonstrate that our proposed DMSSN achieves state-of-the-art performance on multiple datasets. We will soon make the code and dataset publicly available on https://github.com/anonymous0519/HSOD-BIT.
Related papers
- ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Coarse-to-Fine Sparse Transformer for Hyperspectral Image Reconstruction [138.04956118993934]
We propose a novel Transformer-based method, coarse-to-fine sparse Transformer (CST)
CST embedding HSI sparsity into deep learning for HSI reconstruction.
In particular, CST uses our proposed spectra-aware screening mechanism (SASM) for coarse patch selecting. Then the selected patches are fed into our customized spectra-aggregation hashing multi-head self-attention (SAH-MSA) for fine pixel clustering and self-similarity capturing.
arXiv Detail & Related papers (2022-03-09T16:17:47Z) - Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image
Reconstruction [127.20208645280438]
Hyperspectral image (HSI) reconstruction aims to recover the 3D spatial-spectral signal from a 2D measurement.
Modeling the inter-spectra interactions is beneficial for HSI reconstruction.
Mask-guided Spectral-wise Transformer (MST) proposes a novel framework for HSI reconstruction.
arXiv Detail & Related papers (2021-11-15T16:59:48Z) - Spatial-Spectral Feedback Network for Super-Resolution of Hyperspectral
Imagery [11.76638109321532]
High-dimensional and complex spectral patterns in hyperspectral image make it difficult to explore spatial information and spectral information among bands simultaneously.
The number of available hyperspectral training samples is extremely small, which can easily lead to overfitting when training a deep neural network.
We propose a novel Spatial-Spectral Feedback Network (SSFN) to refine low-level representations among local spectral bands with high-level information from global spectral bands.
arXiv Detail & Related papers (2021-03-07T13:28:48Z) - Hyperspectral Image Super-Resolution with Spectral Mixup and
Heterogeneous Datasets [99.92564298432387]
This work studies Hyperspectral image (HSI) super-resolution (SR)
HSI SR is characterized by high-dimensional data and a limited amount of training examples.
This exacerbates the undesirable behaviors of neural networks such as memorization and sensitivity to out-of-distribution samples.
arXiv Detail & Related papers (2021-01-19T12:19:53Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z) - Improving Deep Hyperspectral Image Classification Performance with
Spectral Unmixing [3.84448093764973]
We propose an abundance-based multi-HSI classification method.
We convert every HSI from the spectral domain to the abundance domain by a dataset-specific autoencoder.
Secondly, the abundance representations from multiple HSIs are collected to form an enlarged dataset.
arXiv Detail & Related papers (2020-04-01T17:14:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.