論文の概要: Accelerated MRI With Deep Linear Convolutional Transform Learning
- arxiv url: http://arxiv.org/abs/2204.07923v1
- Date: Sun, 17 Apr 2022 04:47:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-19 14:32:38.187999
- Title: Accelerated MRI With Deep Linear Convolutional Transform Learning
- Title(参考訳): 深部線形畳み込み変換学習によるmriの高速化
- Authors: Hongyi Gu, Burhaneddin Yaman, Steen Moeller, Il Yong Chun, Mehmet
Ak\c{c}akaya
- Abstract要約: 近年の研究では、深層学習に基づくMRI再構成は、従来の手法よりも複数の応用において優れていることが示されている。
本研究では, CS, TL, DL再構成のアイデアを組み合わせて, 深い線形畳み込み変換を学習する。
提案手法は,均一なアンダーサンプリングパターンをサポートしながら,DL法に匹敵するレベルのMR画像を再構成可能であることを示す。
- 参考スコア(独自算出の注目度): 7.927206441149002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies show that deep learning (DL) based MRI reconstruction
outperforms conventional methods, such as parallel imaging and compressed
sensing (CS), in multiple applications. Unlike CS that is typically implemented
with pre-determined linear representations for regularization, DL inherently
uses a non-linear representation learned from a large database. Another line of
work uses transform learning (TL) to bridge the gap between these two
approaches by learning linear representations from data. In this work, we
combine ideas from CS, TL and DL reconstructions to learn deep linear
convolutional transforms as part of an algorithm unrolling approach. Using
end-to-end training, our results show that the proposed technique can
reconstruct MR images to a level comparable to DL methods, while supporting
uniform undersampling patterns unlike conventional CS methods. Our proposed
method relies on convex sparse image reconstruction with linear representation
at inference time, which may be beneficial for characterizing robustness,
stability and generalizability.
- Abstract(参考訳): 近年の研究では、深層学習(DL)に基づくMRI再構成は、並列イメージングや圧縮センシング(CS)といった従来の手法よりも複数の用途で優れていることが示されている。
通常、正規化のために事前決定された線形表現で実装されるCSとは異なり、DLは本質的に大きなデータベースから学習した非線形表現を使用する。
別の行では、データから線形表現を学習することで、この2つのアプローチのギャップを埋めるために変換学習(TL)を使用している。
本研究では,CS,TLおよびDL再構成のアイデアを組み合わせて,アルゴリズムアンロールアプローチの一環として,深い線形畳み込み変換を学習する。
提案手法は,従来のCS法とは異なり,一様アンダーサンプリングパターンをサポートしながら,DL法に匹敵するレベルのMR画像を再構成できることを示す。
提案手法は, 線形表現を用いた凸スパース画像再構成に依拠しており, 頑健性, 安定性, 一般化性を特徴付けるのに有用である。
関連論文リスト
- vSHARP: variable Splitting Half-quadratic ADMM algorithm for
Reconstruction of inverse-Problems [7.694990352622926]
MRI再建では、不十分な逆問題が発生し、十分なクローズドフォーム解析解が得られない。
逆問題再構成のための教師付き分割半四分法ADMMアルゴリズム(vSHARP)を提案する。
本稿では,vSHARPの優れた性能に着目し,最先端手法による実験結果の比較分析を行った。
論文 参考訳(メタデータ) (2023-09-18T17:26:22Z) - Generative Diffusion Prior for Unified Image Restoration and Enhancement [62.76390152617949]
既存の画像復元法は、主に自然画像の後方分布を利用する。
教師なしサンプリング方式で後部分布を効果的にモデル化するための生成拡散優先(GDP)を提案する。
GDPは、線形逆問題、非線形問題、ブラインド問題を解くために、プレトレインデノナイジング拡散生成モデル(DDPM)を利用する。
論文 参考訳(メタデータ) (2023-04-03T16:52:43Z) - Curvature regularization for Non-line-of-sight Imaging from
Under-sampled Data [5.591221518341613]
非視線イメージング(NLOS)は、視線で測定されたデータから3次元の隠れたシーンを再構築することを目的としている。
曲率正規化に基づく新しいNLOS再構成モデルを提案する。
提案したアルゴリズムを,合成データセットと実データセットの両方で評価する。
論文 参考訳(メタデータ) (2023-01-01T14:10:43Z) - Convergent Data-driven Regularizations for CT Reconstruction [41.791026380947685]
本研究では,データから線形正則化法を学習する上で,単純だが相変わらず収束するアプローチについて検討する。
このような手法が収束正則化手法となること、およびそれらが提供する再構成が訓練されたトレーニングデータよりも典型的にスムーズであることを証明する。
論文 参考訳(メタデータ) (2022-12-14T17:34:03Z) - A Unifying Multi-sampling-ratio CS-MRI Framework With Two-grid-cycle
Correction and Geometric Prior Distillation [7.643154460109723]
本稿では,モデルベースと深層学習に基づく手法の利点を融合して,深層展開型マルチサンプリング比CS-MRIフレームワークを提案する。
マルチグリッドアルゴリズムにインスパイアされ、まずCS-MRIに基づく最適化アルゴリズムを補正蒸留方式に組み込む。
各段の圧縮サンプリング比から適応的なステップ長と雑音レベルを学習するために条件モジュールを用いる。
論文 参考訳(メタデータ) (2022-05-14T13:36:27Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
本稿では,これらの用語を暗黙的にモデル化する識別的縮小関数を学習することで,効果的に非盲検デコンボリューション手法を提案する。
実験結果から,提案手法は最先端の手法に対して,効率と精度の点で好適に動作することがわかった。
論文 参考訳(メタデータ) (2021-11-27T12:12:57Z) - Tensor Component Analysis for Interpreting the Latent Space of GANs [41.020230946351816]
本稿では,GANの潜在空間における解釈可能な方向を求める問題に対処する。
提案手法では,テンソルの個々のモードに対応する線形編集と,それらの間の乗法的相互作用をモデル化する非線形編集が可能である。
実験により, 前者は幾何に基づく変換から, 後者は拡張可能な変換を生成できることを示す。
論文 参考訳(メタデータ) (2021-11-23T09:14:39Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
双線形最適化問題に対処するために,CoGDアルゴリズムに基づく信頼度の高い学習法を提案する。
CoGDは、ある変数がスパーシティ制約を持つ場合の双線形問題を解くために導入された。
また、特徴と重みの関連を分解するためにも使用できるため、畳み込みニューラルネットワーク(CNN)をより良く訓練するための我々の手法をさらに一般化することができる。
論文 参考訳(メタデータ) (2021-06-20T04:28:20Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z) - FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning [64.32306537419498]
本稿では,複雑な変換を多様に生成する特徴量に基づく改良・拡張手法を提案する。
これらの変換は、クラスタリングを通じて抽出したクラス内およびクラス間の両方の情報も利用します。
提案手法は,大規模データセットにスケールアップしながら,より小さなデータセットに対して,現在の最先端技術に匹敵するものであることを実証する。
論文 参考訳(メタデータ) (2020-07-16T17:55:31Z) - FLAMBE: Structural Complexity and Representation Learning of Low Rank
MDPs [53.710405006523274]
この研究は、表現学習の問題に焦点を当てている。
基礎となる(未知の)力学が低階遷移行列に対応するという仮定の下で、表現学習問題と特定の非線形行列分解問題との関連性を示す。
低階遷移モデルにおけるRLの探索と表現学習を行うFLAMBEを開発した。
論文 参考訳(メタデータ) (2020-06-18T19:11:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。