論文の概要: Dynamic attenuation scheme in measurement-device-independent quantum key
distribution over turbulent channels
- arxiv url: http://arxiv.org/abs/2204.08011v1
- Date: Sun, 17 Apr 2022 13:03:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-16 16:55:35.614913
- Title: Dynamic attenuation scheme in measurement-device-independent quantum key
distribution over turbulent channels
- Title(参考訳): 乱流上の測定デバイス非依存量子鍵分布における動的減衰法
- Authors: Brian J. Rollick, George Siopsis, Bing Qi
- Abstract要約: 測定デバイスに依存しない量子鍵分布(MDI QKD)は、実際は極めて安全である。
自由空間チャネル上でのMDI QKDの実行は困難である。
最大の原因の1つは、2つの独立した乱流チャネルのミスマッチした透過性である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Measurement-device-independent quantum key distribution (MDI QKD) offers
great security in practice because it removes all detector side channels.
However, conducting MDI QKD over free-space channels is challenging. One of the
largest culprits is the mismatched transmittance of the two independent
turbulent channels causing a reduced Hong-Ou-Mandel visibility and thus a lower
secret key rate. Here we introduce a dynamic attenuation scheme, where the
transmittance of each of the two channels is monitored in real time by
transmitting bright light pulses from each users to the measurement device.
Based on the measured channel transmittance, a suitable amount of attenuation
is introduced to the low-loss channel at the measurement device. Our simulation
results show a significant improvement of QKD performance, especially when
using short raw keys.
- Abstract(参考訳): 測定デバイスに依存しない量子鍵分布(MDI QKD)は、検知側チャネルを全て削除するため、実際には極めて安全性が高い。
しかし、自由空間チャネル上でのMDI QKDの実行は困難である。
最大の原因の1つは、香港・ウー・マンデルの視認性が低下し、秘密鍵率が低下する2つの独立した乱流チャネルの不一致透過性である。
本稿では,各ユーザからの明るい光パルスを計測装置に送信することにより,各チャネルの送信をリアルタイムに監視する動的減衰方式を提案する。
測定されたチャネル透過率に基づいて、測定装置の低損失チャネルに適切な減衰量を導入する。
シミュレーションの結果,QKDの性能は,特に短い生鍵を用いた場合,著しく向上した。
関連論文リスト
- Experimental decoy-state asymmetric measurement-device-independent
quantum key distribution over a turbulent high-loss channel [0.0]
Measurement-Device-Independent (MDI) QKDは、信頼できない第三者が測定を行い、すべてのサイドチャネル攻撃を取り除くことを認可する。
有限の大きさのデコイ状態MDI QKDの乱流条件下でのキーレート向上を示す。
論文 参考訳(メタデータ) (2023-11-07T20:36:33Z) - How to harness high-dimensional temporal entanglement, using limited
interferometry setups [62.997667081978825]
偏極時間領域における高次元エンタングルメントの最初の完全解析法を開発した。
本稿では,量子鍵分布において,関連する密度行列要素とセキュリティパラメータを効率的に認証する方法を示す。
自由空間量子通信の耐雑音性をさらに高める新しい構成を提案する。
論文 参考訳(メタデータ) (2023-08-08T17:44:43Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
本稿では,CSI行列内の固有周波数領域相関を明らかにするエンコーダデコーダに基づくネットワークを提案する。
エンコーダ・デコーダネットワーク全体がチャネル圧縮に使用される。
提案手法は,共同作業における現状のチャネル推定およびフィードバック技術より優れる。
論文 参考訳(メタデータ) (2023-06-08T06:15:17Z) - Experimental free-space quantum key distribution over a turbulent
high-loss channel [0.0]
ファイバーベースの通信ネットワークと比較して、自由空間ネットワークはデコヒーレンスや光子損失が著しく少ない。
大気の乱流は透過率分布のずれに寄与し、ノイズやチャネル損失をもたらす。
アクティブな研究は現在、高損失チャネルにおけるセキュアで実用的な量子通信の確立に重点を置いている。
論文 参考訳(メタデータ) (2023-05-02T11:47:22Z) - Gigahertz measurement-device-independent quantum key distribution using
directly modulated lasers [0.0]
測定デバイスに依存しない量子鍵分布(MDI-QKD)は、量子セキュア通信のための技術である。
我々は、ギガヘルツクロックレートで、かつコンパクトなMDI-QKDシステム設計を導入し、レーザー揺らぎに対するレジリエンスを向上した。
54dBチャネル損失では最大8bps,30dBチャネル損失では2kbpsとなる。
論文 参考訳(メタデータ) (2021-05-14T10:17:10Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
本稿では,ミリ波(mmWave)システムのモデル駆動深層学習(MDDL)に基づくチャネル推定とフィードバック方式を提案する。
無線周波数(RF)鎖の限られた数から高次元チャネルを推定するためのアップリンクパイロットオーバーヘッドを低減するために,位相シフトネットワークとチャネル推定器を自動エンコーダとして共同で訓練することを提案する。
MDDLに基づくチャネル推定とフィードバック方式は,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-22T13:34:53Z) - Path-encoded high-dimensional quantum communication over a 2 km
multicore fiber [50.591267188664666]
パス符号化された高次元量子状態の2km長のマルチコアファイバ上での信頼性伝送を実証する。
安定した干渉検出が保証され、低いエラー率と秘密鍵レートの6.3Mbit/sの生成が可能になる。
論文 参考訳(メタデータ) (2021-03-10T11:02:45Z) - Long-distance free-space measurement-device-independent quantum key
distribution [16.523477335637743]
2光子干渉に基づく測定デバイス非依存量子鍵分布(MDI-QKD)は、検出システムに対する全ての攻撃に免疫する。
最初の自由空間 MDI-QKD は19.2km の都市大気チャネル上にあり、有効な大気の厚さをはるかに上回っている。
ここで開発された技術は、独立した単一光子の長距離干渉を含む自由空間における量子実験への道を開く。
論文 参考訳(メタデータ) (2020-06-09T07:33:49Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
本稿では,mmWave IRSシステムに対するディープデノイングニューラルネットワークを用いた圧縮チャネル推定法を提案する。
我々はまず、受信チェーンをほとんど使わず、アップリンクのユーザ-IRSチャネルを推定するハイブリッド・パッシブ/アクティブIRSアーキテクチャを導入する。
完全チャネル行列は、圧縮センシングに基づいて限られた測定値から再構成することができる。
論文 参考訳(メタデータ) (2020-06-03T12:18:57Z) - DeepSIC: Deep Soft Interference Cancellation for Multiuser MIMO
Detection [98.43451011898212]
複数のシンボルが同時に送信されるマルチユーザマルチインプットマルチアウトプット(MIMO)設定では、正確なシンボル検出が困難である。
本稿では,DeepSICと呼ぶ反復ソフト干渉キャンセリング(SIC)アルゴリズムの,データ駆動による実装を提案する。
DeepSICは、チャネルを線形にすることなく、限られたトレーニングサンプルから共同検出を行うことを学ぶ。
論文 参考訳(メタデータ) (2020-02-08T18:31:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。