論文の概要: Monte Carlo Tree Search for Interpreting Stress in Natural Language
- arxiv url: http://arxiv.org/abs/2204.08105v1
- Date: Sun, 17 Apr 2022 23:06:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-20 00:55:09.073947
- Title: Monte Carlo Tree Search for Interpreting Stress in Natural Language
- Title(参考訳): 自然言語におけるストレス解釈のためのモンテカルロ木探索
- Authors: Kyle Swanson, Joy Hsu, Mirac Suzgun
- Abstract要約: モンテカルロ木探索(MCTS)を用いたテキストから人の精神状態を説明する新しい方法を提案する。
我々のアルゴリズムは、テキストの特定のコンテキストに依存する説明と文脈に依存しない説明の両方を見つけることができる。
- 参考スコア(独自算出の注目度): 4.898659895355356
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Natural language processing can facilitate the analysis of a person's mental
state from text they have written. Previous studies have developed models that
can predict whether a person is experiencing a mental health condition from
social media posts with high accuracy. Yet, these models cannot explain why the
person is experiencing a particular mental state. In this work, we present a
new method for explaining a person's mental state from text using Monte Carlo
tree search (MCTS). Our MCTS algorithm employs trained classification models to
guide the search for key phrases that explain the writer's mental state in a
concise, interpretable manner. Furthermore, our algorithm can find both
explanations that depend on the particular context of the text (e.g., a recent
breakup) and those that are context-independent. Using a dataset of Reddit
posts that exhibit stress, we demonstrate the ability of our MCTS algorithm to
identify interpretable explanations for a person's feeling of stress in both a
context-dependent and context-independent manner.
- Abstract(参考訳): 自然言語処理は、書いたテキストから人の精神状態の分析を容易にする。
従来の研究では、ソーシャルメディア投稿からメンタルヘルス状態を高い精度で予測できるモデルが開発されている。
しかし、これらのモデルでは、人が特定の精神状態を経験している理由を説明できない。
本研究では,モンテカルロ木探索(mcts)を用いて,テキストから人の精神状態を説明する新しい方法を提案する。
mctsアルゴリズムは、訓練された分類モデルを用いて、著者の精神状態を説明する重要なフレーズを簡潔で解釈可能な方法で探索する。
さらに、本アルゴリズムは、テキストの特定のコンテキストに依存する説明(例えば、最近のブレークアップ)と文脈に依存しない説明の両方を見つけることができる。
ストレスを示すReddit投稿のデータセットを用いて、MCTSアルゴリズムが、文脈依存と文脈非依存の両方で、人のストレス感に対する解釈可能な説明を識別する能力を示す。
関連論文リスト
- A Multi-Task Text Classification Pipeline with Natural Language Explanations: A User-Centric Evaluation in Sentiment Analysis and Offensive Language Identification in Greek Tweets [8.846643533783205]
この研究は、テキスト分類タスクで使用できる新しいパイプラインの初期の概念を紹介している。
テキストをラベル付けする分類器と、説明を提供する説明生成器の2つのモデルから構成される。
ギリシャのツイートにおける感情分析と攻撃的な言語識別のタスクを中心に実験が行われている。
論文 参考訳(メタデータ) (2024-10-14T08:41:31Z) - Reliability Analysis of Psychological Concept Extraction and
Classification in User-penned Text [9.26840677406494]
私たちはLoSTデータセットを使って、Redditユーザーの投稿に低い自尊心があることを示唆するニュアンスのあるテキストキューをキャプチャします。
以上の結果から, PLM の焦点を Trigger と Consequences からより包括的な説明に移行する必要性が示唆された。
論文 参考訳(メタデータ) (2024-01-12T17:19:14Z) - Chat2Brain: A Method for Mapping Open-Ended Semantic Queries to Brain
Activation Maps [59.648646222905235]
そこで本研究では,テキスト2画像モデルであるText2BrainにLLMを組み合わせ,セマンティッククエリを脳活性化マップにマッピングするChat2Brainを提案する。
テキストクエリのより複雑なタスクに対して、Chat2Brainが可塑性なニューラルアクティベーションパターンを合成できることを実証した。
論文 参考訳(メタデータ) (2023-09-10T13:06:45Z) - LonXplain: Lonesomeness as a Consequence of Mental Disturbance in Reddit
Posts [0.41998444721319217]
ソーシャルメディアは、自然言語処理(NLP)を通して潜在精神状態を推測する潜在的な情報源である
心理学理論に関する既存の文献は、孤独が対人的リスク要因の主な結果であることを示している。
ソーシャルメディア投稿における一意性検出を、説明可能な二項分類問題として定式化する。
論文 参考訳(メタデータ) (2023-05-30T04:21:24Z) - Towards Interpretable Mental Health Analysis with Large Language Models [27.776003210275608]
大規模言語モデル(LLM)のメンタルヘルス分析と感情的推論能力は,5つのタスクにまたがる11のデータセット上で評価した。
本研究は, 精神保健分析のためのLCMについて, それぞれの意思決定に関する説明を提示するように指示することで, 解釈可能な精神保健分析を行う。
得られた説明の質を評価するために、厳密な人的評価を伝達し、163の人的評価による新しいデータセットを作成する。
論文 参考訳(メタデータ) (2023-04-06T19:53:59Z) - Explanation Selection Using Unlabeled Data for Chain-of-Thought
Prompting [80.9896041501715]
非専門家によって書かれたオフ・ザ・シェルフの説明のように、タスクのために"チューニング"されていない説明は、中途半端なパフォーマンスをもたらす可能性がある。
本稿では,ブラックボックス方式で説明拡散プロンプトを最適化する方法の課題に対処する。
論文 参考訳(メタデータ) (2023-02-09T18:02:34Z) - NELLIE: A Neuro-Symbolic Inference Engine for Grounded, Compositional, and Explainable Reasoning [59.16962123636579]
本稿では,Prologベースの推論エンジンを新たに提案する。
我々は手作りのルールを、ニューラルネットワークモデリング、ガイド付き生成、半密検索の組み合わせで置き換える。
我々の実装であるNELLIEは、完全に解釈可能なエンドツーエンドの基底QAを示す最初のシステムである。
論文 参考訳(メタデータ) (2022-09-16T00:54:44Z) - Natural Language Rationales with Full-Stack Visual Reasoning: From
Pixels to Semantic Frames to Commonsense Graphs [106.15931418425906]
本研究は,複数の複雑な視覚的推論課題にまたがる自然言語の有理性の生成に焦点を当てた最初の研究である。
RationaleVT Transformerは、事前学習された言語モデルとオブジェクト認識、接地された視覚的セマンティックフレーム、視覚的コモンセンスグラフを組み合わせることで、自由テキスト論理を生成することを学習する統合モデルである。
実験の結果, 基礎となる事前学習言語モデルは視覚適応の恩恵を受けており, 複雑な視覚的・テキスト的推論タスクに対するモデル解釈可能性の補完として, 自由文合理化が有望な研究方向であることを示唆した。
論文 参考訳(メタデータ) (2020-10-15T05:08:56Z) - Sequential Explanations with Mental Model-Based Policies [20.64968620536829]
本研究では,説明者の精神モデルに基づく説明を提供するための強化学習フレームワークを適用した。
我々は、説明が選ばれ、参加者に提示される新しいオンライン人間実験を行う。
以上の結果から,精神モデルに基づく政策は,複数のシーケンシャルな説明よりも解釈可能性を高める可能性が示唆された。
論文 参考訳(メタデータ) (2020-07-17T14:43:46Z) - Compositional Explanations of Neurons [52.71742655312625]
本稿では, 合成論理的概念を同定し, 深部表現におけるニューロンの説明手順について述べる。
本稿では,視覚と自然言語処理のモデルにおける解釈可能性に関するいくつかの疑問に答えるために,この手順を用いる。
論文 参考訳(メタデータ) (2020-06-24T20:37:05Z) - ESPRIT: Explaining Solutions to Physical Reasoning Tasks [106.77019206219984]
ESPRITは自然言語における定性的物理学に関する常識推論のためのフレームワークである。
我々のフレームワークは、エージェントや人間が容易に解を推論できるように、物理的シミュレーションがどのように因果的に進化するかを説明することを学ぶ。
人間の評価は、ESPRITが重要な微細な細部を生み出し、人間のアノテーションよりも物理的な概念を高い範囲でカバーしていることを示している。
論文 参考訳(メタデータ) (2020-05-02T07:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。