Parallel Network with Channel Attention and Post-Processing for Carotid
Arteries Vulnerable Plaque Segmentation in Ultrasound Images
- URL: http://arxiv.org/abs/2204.08127v1
- Date: Mon, 18 Apr 2022 01:55:11 GMT
- Title: Parallel Network with Channel Attention and Post-Processing for Carotid
Arteries Vulnerable Plaque Segmentation in Ultrasound Images
- Authors: Yanchao Yuan, Cancheng Li, Lu Xu, Ke Zhang, Yang Hua, Jicong Zhang
- Abstract summary: This paper proposes an automatic convolutional neural network (CNN) method for plaque segmentation in carotid ultrasound images.
Test results show that the proposed method with dice loss function yields a Dice value of 0.820, an IoU of 0.701, Acc of 0.969, and modified Hausdorff distance (MHD) of 1.43 for 30 vulnerable cases of plaques.
- Score: 15.001128693323206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Carotid arteries vulnerable plaques are a crucial factor in the screening of
atherosclerosis by ultrasound technique. However, the plaques are contaminated
by various noises such as artifact, speckle noise, and manual segmentation may
be time-consuming. This paper proposes an automatic convolutional neural
network (CNN) method for plaque segmentation in carotid ultrasound images using
a small dataset. First, a parallel network with three independent scale
decoders is utilized as our base segmentation network, pyramid dilation
convolutions are used to enlarge receptive fields in the three segmentation
sub-networks. Subsequently, the three decoders are merged to be rectified in
channels by SENet. Thirdly, in test stage, the initially segmented plaque is
refined by the max contour morphology post-processing to obtain the final
plaque. Moreover, three loss function Dice loss, SSIM loss and cross-entropy
loss are compared to segment plaques. Test results show that the proposed
method with dice loss function yields a Dice value of 0.820, an IoU of 0.701,
Acc of 0.969, and modified Hausdorff distance (MHD) of 1.43 for 30 vulnerable
cases of plaques, it outperforms some of the conventional CNN-based methods on
these metrics. Additionally, we apply an ablation experiment to show the
validity of each proposed module. Our study provides some reference for similar
researches and may be useful in actual applications for plaque segmentation of
ultrasound carotid arteries.
Related papers
- Lesion-aware network for diabetic retinopathy diagnosis [28.228110579446227]
We propose a CNN-based diabetic retinopathy (DR) diagnosis network with attention mechanism involved, termed lesion-aware network.
The proposed LANet is constructed by embedding the LAM and FPM into the CNN decoders for DR-related information utilization.
Our method outperforms the mainstream methods with an area under curve of 0.967 in DR screening, and increases the overall average precision by 7.6%, 2.1%, and 1.2% in lesion segmentation on three datasets.
arXiv Detail & Related papers (2024-08-14T03:06:04Z) - WATUNet: A Deep Neural Network for Segmentation of Volumetric Sweep
Imaging Ultrasound [1.2903292694072621]
Volume sweep imaging (VSI) is an innovative approach that enables untrained operators to capture quality ultrasound images.
We present a novel segmentation model known as Wavelet_Attention_UNet (WATUNet)
In this model, we incorporate wavelet gates (WGs) and attention gates (AGs) between the encoder and decoder instead of a simple connection to overcome the limitations mentioned.
arXiv Detail & Related papers (2023-11-17T20:32:37Z) - Attention-based CT Scan Interpolation for Lesion Segmentation of
Colorectal Liver Metastases [2.680862925538592]
Small liver lesions common to colorectal liver (CRLMs) are challenging for convolutional neural network (CNN) segmentation models.
We propose an unsupervised attention-based model to generate intermediate slices from consecutive triplet slices in CT scans.
Our model's outputs are consistent with the original input slices while increasing the segmentation performance in two cutting-edge 3D segmentation pipelines.
arXiv Detail & Related papers (2023-08-30T10:21:57Z) - Weakly supervised segmentation of intracranial aneurysms using a novel 3D focal modulation UNet [0.5106162890866905]
We propose FocalSegNet, a novel 3D focal modulation UNet, to detect an aneurysm and offer an initial, coarse segmentation of it from time-of-flight MRA image patches.
We trained and evaluated our model on a public dataset, and in terms of UIA detection, our model showed a low false-positive rate of 0.21 and a high sensitivity of 0.80.
arXiv Detail & Related papers (2023-08-06T03:28:08Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - Acute ischemic stroke lesion segmentation in non-contrast CT images
using 3D convolutional neural networks [0.0]
We propose an automatic algorithm aimed at volumetric segmentation of acute ischemic stroke lesion in non-contrast computed tomography brain 3D images.
Our deep-learning approach is based on the popular 3D U-Net convolutional neural network architecture.
arXiv Detail & Related papers (2023-01-17T10:39:39Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - CNN-based fully automatic wrist cartilage volume quantification in MR
Image [55.41644538483948]
The U-net convolutional neural network with additional attention layers provides the best wrist cartilage segmentation performance.
The error of cartilage volume measurement should be assessed independently using a non-MRI method.
arXiv Detail & Related papers (2022-06-22T14:19:06Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
emphiMeshSegNet in the first stage of TS-MDL reached an averaged Dice similarity coefficient (DSC) at 0.953pm0.076$, significantly outperforming the original MeshSegNet.
PointNet-Reg achieved a mean absolute error (MAE) of $0.623pm0.718, mm$ in distances between the prediction and ground truth for $44$ landmarks, which is superior compared with other networks for landmark detection.
arXiv Detail & Related papers (2021-09-24T13:00:26Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
We propose a novel catheter segmentation approach, which requests fewer annotations than the supervised learning method.
Our scheme considers a deep Q learning as the pre-localization step, which avoids voxel-level annotation.
With the detected catheter, patch-based Dual-UNet is applied to segment the catheter in 3D volumetric data.
arXiv Detail & Related papers (2020-06-25T21:10:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.