論文の概要: An alternative approach for distributed parameter estimation under
Gaussian settings
- arxiv url: http://arxiv.org/abs/2204.08317v1
- Date: Thu, 14 Apr 2022 03:49:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-19 17:00:59.013246
- Title: An alternative approach for distributed parameter estimation under
Gaussian settings
- Title(参考訳): ガウス環境下における分散パラメータ推定の代替手法
- Authors: Subhro Das
- Abstract要約: 本稿では,マルチエージェントネットワーク上での分散線形パラメータ推定に対して,異なるアプローチをとる。
各エージェントにおけるセンサ測定は線形であり、付加的な白色ガウス雑音で劣化する。
そこで本研究では,コンセンサスとイノベーションの概念を融合した分散推定アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 6.624726878647541
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper takes a different approach for the distributed linear parameter
estimation over a multi-agent network. The parameter vector is considered to be
stochastic with a Gaussian distribution. The sensor measurements at each agent
are linear and corrupted with additive white Gaussian noise. Under such
settings, this paper presents a novel distributed estimation algorithm that
fuses the the concepts of consensus and innovations by incorporating the
consensus terms (of neighboring estimates) into the innovation terms. Under the
assumption of distributed parameter observability, introduced in this paper, we
design the optimal gain matrices such that the distributed estimates are
consistent and achieves fast convergence.
- Abstract(参考訳): 本稿では,マルチエージェントネットワーク上での分散線形パラメータ推定に対して,異なるアプローチをとる。
パラメータベクトルはガウス分布と確率的であると考えられている。
各エージェントにおけるセンサ測定は線形であり、付加的な白色ガウス雑音で劣化する。
そこで本稿では,コンセンサス項(隣り合う推定項)を革新項に組み込むことで,コンセンサスとイノベーションの概念を融合する分散推定アルゴリズムを提案する。
本稿では,分散パラメータ観測可能性の前提として,分散推定値が一貫した最適ゲイン行列を設計し,高速収束を実現する。
関連論文リスト
- Variance-Reducing Couplings for Random Features [57.73648780299374]
ランダム機能(RF)は、機械学習においてカーネルメソッドをスケールアップする一般的なテクニックである。
ユークリッド空間と離散入力空間の両方で定義されるRFを改善するための結合を求める。
パラダイムとしての分散還元の利点と限界について、驚くほどの結論に達した。
論文 参考訳(メタデータ) (2024-05-26T12:25:09Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Distributed Bayesian Estimation in Sensor Networks: Consensus on
Marginal Densities [15.038649101409804]
連続変数上の確率分布の関数空間において、確率的確率的アルゴリズムを導出する。
これらの結果を利用して、個々のエージェントが観測する変数のサブセットに制限された新しい分散推定器を得る。
これは、協調的なローカライゼーションやフェデレートドラーニングのような応用に関係しており、任意のエージェントで収集されたデータは、関心のあるすべての変数のサブセットに依存する。
論文 参考訳(メタデータ) (2023-12-02T21:10:06Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Smpling (AIS) は、深層生成モデルの難易度を推定するために使われる一般的なアルゴリズムである。
本稿では、フレキシブルな中間分布を持つパラメータAISプロセスを提案し、サンプリングに少ないステップを使用するようにブリッジング分布を最適化する。
我々は, 最適化AISの性能評価を行い, 深部生成モデルの限界推定を行い, 他の推定値と比較した。
論文 参考訳(メタデータ) (2022-09-27T07:58:25Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
パラメータ、対称性、モダリティなどの分布の性質の制御は、フレキシブルな分布の族を生み出す。
変動型オートエンコーダと潜在空間ネットワークモデル内で提案した分布を利用して,我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2022-04-20T21:25:21Z) - Learning Structured Gaussians to Approximate Deep Ensembles [10.055143995729415]
本稿では,スパース構造多変量ガウシアンを用いて,高密度画像予測タスクのための閉形式近似器を提案する。
正規分布における予測の不確かさと構造的相関を、サンプリング単独で暗黙的にではなく、明示的に捉える。
単分子深度推定におけるアプローチの利点を実証し,本手法の利点が同等の定量的性能で得られることを示す。
論文 参考訳(メタデータ) (2022-03-29T12:34:43Z) - On observability and optimal gain design for distributed linear
filtering and prediction [6.624726878647541]
本稿では,分散線形フィルタリングと予測に対する新しいアプローチを提案する。
本稿では,コンセンサス+革新型分散推定手法に着想を得て,コンセンサスとイノベーションの概念を融合した新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-07T17:11:42Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
均質な分散凸最適化のためのNewtonアルゴリズムを解析し、各マシンが同じ人口目標の勾配を計算する。
提案手法は,既存の手法と比較して,性能を損なうことなく,必要な通信ラウンドの数,頻度を低減できることを示す。
論文 参考訳(メタデータ) (2021-10-07T17:51:10Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
サンプリングフリー変動推論のための後方近似のより効率的なパラメータ化を提案する。
提案手法は,標準回帰問題に対する競合的な結果をもたらし,大規模画像分類タスクに適している。
論文 参考訳(メタデータ) (2021-03-15T16:16:18Z) - Distributed Variational Bayesian Algorithms Over Sensor Networks [6.572330981878818]
一般ベイズ推論問題に対する2つの新しい分散VBアルゴリズムを提案する。
提案アルゴリズムは、核融合センターで利用可能な全データに依存する集中型VBアルゴリズムとほぼ同等の性能を有する。
論文 参考訳(メタデータ) (2020-11-27T08:12:18Z) - The k-tied Normal Distribution: A Compact Parameterization of Gaussian
Mean Field Posteriors in Bayesian Neural Networks [46.677567663908185]
変分ベイズ推論は、ベイズニューラルネットワークの重み付けを近似する一般的な手法である。
最近の研究は、性能向上を期待して、近似後部のよりリッチなパラメータ化を探求している。
これらの変動パラメータを低ランク因子化に分解することにより、モデルの性能を低下させることなく変動近似をよりコンパクトにすることができる。
論文 参考訳(メタデータ) (2020-02-07T07:33:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。