論文の概要: Predictive analytics for appointment bookings
- arxiv url: http://arxiv.org/abs/2204.08475v1
- Date: Mon, 18 Apr 2022 14:02:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-20 14:47:44.878786
- Title: Predictive analytics for appointment bookings
- Title(参考訳): 予約予約の予測分析
- Authors: MA Nang Laik
- Abstract要約: 第1のモデルは、顧客が会議に現れるかどうかを予測し、第2のモデルは、顧客がプレミアムサービスを予約するかどうかを示す。
どちらのモデルも75%以上の精度で正確な結果が得られる。
本稿では,予測需要を用いた資源計画の枠組みを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the service providers in the financial service sector, who provide
premium service to the customers, wanted to harness the power of data analytics
as data mining can uncover valuable insights for better decision making.
Therefore, the author aimed to use predictive analytics to discover crucial
factors that will affect the customers' showing up for their appointment and
booking the service. The first model predicts whether a customer will show up
for the meeting, while the second model indicates whether a customer will book
a premium service. Both models produce accurate results with more than a 75%
accuracy rate, thus providing a more robust model for implementation than gut
feeling and intuition. Finally, this paper offers a framework for resource
planning using the predicted demand.
- Abstract(参考訳): 顧客にプレミアムサービスを提供する金融サービス分野のサービスプロバイダの1つは、データマイニングがよりよい意思決定のための貴重な洞察を明らかにすることができるため、データ分析の力を活用したいと考えていた。
そこで著者は,予測分析を用いて顧客のアポイントメントや予約に影響を及ぼす重要な要因を発見することを目的とした。
第1モデルは、顧客が会議に現れるかどうかを予測し、第2モデルは、顧客がプレミアムサービスを予約するかどうかを示す。
どちらのモデルも75%以上の精度で正確な結果を出すため、直感や直感よりも実装のためのより堅牢なモデルを提供する。
最後に,予測需要を用いた資源計画の枠組みについて述べる。
関連論文リスト
- Achieving Fairness in Predictive Process Analytics via Adversarial Learning [50.31323204077591]
本稿では、デバイアスフェーズを予測ビジネスプロセス分析に組み込むことの課題に対処する。
本研究の枠組みは, 4つのケーススタディで検証し, 予測値に対する偏り変数の寄与を著しく低減することを示した。
論文 参考訳(メタデータ) (2024-10-03T15:56:03Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - Causal Analysis of Customer Churn Using Deep Learning [9.84528076130809]
顧客チャーン(Customer Churn)は、ビジネスとの関係を終了するか、特定の期間における顧客エンゲージメントを減少させる。
本稿では,ディープフィードフォワードニューラルネットワークを用いた分類手法を提案する。
また,顧客を混乱させる原因を予測するための因果ベイズネットワークを提案する。
論文 参考訳(メタデータ) (2023-04-20T18:56:13Z) - Customer Churn Prediction Model using Explainable Machine Learning [0.0]
この論文の主な目的は、チャーンする可能性が最も高い潜在的な顧客を予測するのに役立つ、ユニークな顧客チャーン予測モデルを開発することである。
各種木に基づく機械学習手法とアルゴリズムの性能評価と解析を行った。
モデル説明可能性と透明性を改善するため,提案手法では,特徴の組合せについてシェープ値を計算する手法を提案する。
論文 参考訳(メタデータ) (2023-03-02T04:45:57Z) - Customer Profiling, Segmentation, and Sales Prediction using AI in
Direct Marketing [0.0]
本稿では,顧客プロファイルシステムを開発するためのデータマイニング前処理手法を提案する。
本研究の主な成果は、顧客プロファイルの作成と商品の販売予測である。
論文 参考訳(メタデータ) (2023-02-03T14:45:09Z) - Estimating defection in subscription-type markets: empirical analysis
from the scholarly publishing industry [0.0]
本稿では,学術出版業界における顧客チャーン予測の実証的研究について紹介する。
本研究は,6.5年間の顧客定期購読データに対する予測手法について検討した。
このアプローチは、ビジネス対ビジネスのコンテキストにおいて、正確かつ一意に有用であることを示します。
論文 参考訳(メタデータ) (2022-11-18T01:29:51Z) - Proactive Detractor Detection Framework Based on Message-Wise Sentiment
Analysis Over Customer Support Interactions [60.87845704495664]
本稿では、チャットベースのカスタマーサポートのインタラクションにのみ依存して、個々のユーザの推薦決定を予測するフレームワークを提案する。
ケーススタディでは、ラテンアメリカの大手電子商取引会社の金融分野における16.4kのユーザ数と48.7kの顧客サポートに関する会話を分析した。
以上の結果から,CS会話のメッセージワイドな感情進化のみに基づいて,ユーザが製品やサービスを推薦する可能性を予測することが可能であることが示唆された。
論文 参考訳(メタデータ) (2022-11-08T00:43:36Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
計算強化学習は、未来の感覚の予測を通じて、エージェントの世界の知覚を構築しようとする。
この一連の作業において、オープンな課題は、エージェントがどの予測が意思決定を最も支援できるかを、無限に多くの予測から決定することである。
本稿では,エージェントが何を予測するかを学習するメタ段階的な降下過程,(2)選択した予測の見積もり,3)将来の報酬を最大化するポリシーを生成する方法を紹介する。
論文 参考訳(メタデータ) (2022-06-13T21:31:06Z) - Enhancing User' s Income Estimation with Super-App Alternative Data [59.60094442546867]
これは、これらの代替データソースのパフォーマンスと、業界に受け入れられた局の収入推定器のパフォーマンスを比較します。
本論文は、金融機関がリスクプロファイルの構築に代替データを導入しようとする動機を示すものである。
論文 参考訳(メタデータ) (2021-04-12T21:34:44Z) - Predicting Customer Lifetime Values -- ecommerce use case [0.0]
この研究は、まず'buy-till-you-die'統計モデルを使用して顧客の振る舞いを予測し、その後、同じデータセット上でニューラルネットワークを使用して結果を比較する、顧客の将来の購入を予測する2つのアプローチを比較する。
論文 参考訳(メタデータ) (2021-02-10T23:17:16Z) - Predicting seasonal influenza using supermarket retail records [59.18952050885709]
我々は,スーパーマーケットの小売データを,センチネルバスケットの識別を通じてインフルエンザの代替信号とみなす。
SVR(Support Vector Regression)モデルを用いて、季節性インフルエンザ発生の予測を行います。
論文 参考訳(メタデータ) (2020-12-08T16:30:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。