論文の概要: CGC: Contrastive Graph Clustering for Community Detection and Tracking
- arxiv url: http://arxiv.org/abs/2204.08504v3
- Date: Mon, 27 Mar 2023 00:03:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 03:31:16.868158
- Title: CGC: Contrastive Graph Clustering for Community Detection and Tracking
- Title(参考訳): CGC: コミュニティ検出とトラッキングのためのコントラストグラフクラスタリング
- Authors: Namyong Park, Ryan Rossi, Eunyee Koh, Iftikhar Ahamath Burhanuddin,
Sungchul Kim, Fan Du, Nesreen Ahmed, Christos Faloutsos
- Abstract要約: グラフクラスタリングのための新しいエンドツーエンドフレームワークであるCGCを開発した。
CGCは、対照的なグラフ学習フレームワークでノードの埋め込みとクラスタ割り当てを学習する。
時間進化データに対してCGCを拡張し、時間的グラフクラスタリングを漸進的な学習方式で行う。
- 参考スコア(独自算出の注目度): 33.48636823444052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given entities and their interactions in the web data, which may have
occurred at different time, how can we find communities of entities and track
their evolution? In this paper, we approach this important task from graph
clustering perspective. Recently, state-of-the-art clustering performance in
various domains has been achieved by deep clustering methods. Especially, deep
graph clustering (DGC) methods have successfully extended deep clustering to
graph-structured data by learning node representations and cluster assignments
in a joint optimization framework. Despite some differences in modeling choices
(e.g., encoder architectures), existing DGC methods are mainly based on
autoencoders and use the same clustering objective with relatively minor
adaptations. Also, while many real-world graphs are dynamic, previous DGC
methods considered only static graphs. In this work, we develop CGC, a novel
end-to-end framework for graph clustering, which fundamentally differs from
existing methods. CGC learns node embeddings and cluster assignments in a
contrastive graph learning framework, where positive and negative samples are
carefully selected in a multi-level scheme such that they reflect hierarchical
community structures and network homophily. Also, we extend CGC for
time-evolving data, where temporal graph clustering is performed in an
incremental learning fashion, with the ability to detect change points.
Extensive evaluation on real-world graphs demonstrates that the proposed CGC
consistently outperforms existing methods.
- Abstract(参考訳): 異なるタイミングで発生した可能性があるwebデータ内のエンティティとそのインタラクションを考えると、どのようにしてエンティティのコミュニティを見つけて、それらの進化を追跡できるのか?
本稿では,グラフクラスタリングの観点から,この重要な課題にアプローチする。
近年,深層クラスタリング手法により,様々な領域における最先端クラスタリング性能が達成されている。
特に、ディープグラフクラスタリング(DGC)手法は、ノード表現とクラスタ割り当てを共同最適化フレームワークで学習することで、グラフ構造化データにディープクラスタリングをうまく拡張した。
モデリングの選択(例えばエンコーダアーキテクチャ)にいくつかの違いがあるが、既存のDGCメソッドは主にオートエンコーダに基づいており、比較的小さな適応で同じクラスタリングの目的を使用する。
また、多くの実世界のグラフは動的であるが、従来のDGC法は静的グラフのみを考慮していた。
本研究では,既存の手法と根本的に異なる,グラフクラスタリングのための新たなエンドツーエンドフレームワークであるcgcを開発した。
CGCは、ノード埋め込みとクラスタ割り当てを対照的なグラフ学習フレームワークで学習し、正と負のサンプルを階層的なコミュニティ構造やネットワークホモフィリーを反映するように、多段階のスキームで慎重に選択する。
また,時間発展データに対してcgcを拡張し,時間的グラフクラスタリングを漸進的学習方式で実施し,変化点の検出を可能にする。
実世界のグラフに対する広範囲な評価は、提案したCGCが既存の手法より一貫して優れていることを示す。
関連論文リスト
- Self-Supervised Contrastive Graph Clustering Network via Structural Information Fusion [15.293684479404092]
CGCNと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,事前学習プロセスにコントラスト信号と深部構造情報を導入している。
本手法は,複数の実世界のグラフデータセットに対して実験的に検証されている。
論文 参考訳(メタデータ) (2024-08-08T09:49:26Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Deep Temporal Graph Clustering [77.02070768950145]
深部時間グラフクラスタリング(GC)のための汎用フレームワークを提案する。
GCは、時間グラフの相互作用シーケンスに基づくバッチ処理パターンに適合するディープクラスタリング技術を導入している。
我々のフレームワークは、既存の時間グラフ学習手法の性能を効果的に向上させることができる。
論文 参考訳(メタデータ) (2023-05-18T06:17:50Z) - GLCC: A General Framework for Graph-level Clustering [5.069852282550117]
本稿では,グラフレベルのクラスタリングの問題について検討する。
GLCC(Graph-Level Contrastive Clustering)というグラフレベルの一般的なクラスタリングフレームワークを提案する。
様々なよく知られたデータセットに対する実験は、競合するベースラインよりも提案したGLCCの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-10-21T11:08:10Z) - Dual Contrastive Attributed Graph Clustering Network [6.796682703663566]
我々はDCAGC(Dual Contrastive Attributed Graph Clustering Network)と呼ばれる汎用フレームワークを提案する。
DCAGCでは、近隣のコントラストモジュールを利用することで、近隣ノードの類似性を最大化し、ノード表現の品質を向上させる。
DCAGCのすべてのモジュールは、統一されたフレームワークでトレーニングされ、最適化されているため、学習されたノード表現にはクラスタリング指向のメッセージが含まれている。
論文 参考訳(メタデータ) (2022-06-16T03:17:01Z) - Fine-grained Graph Learning for Multi-view Subspace Clustering [2.4094285826152593]
マルチビューサブスペースクラスタリング(FGL-MSC)のためのきめ細かいグラフ学習フレームワークを提案する。
主な課題は、クラスタリングタスクに適合する学習グラフを生成しながら、微細な融合重みを最適化する方法である。
8つの実世界のデータセットの実験では、提案されたフレームワークは最先端の手法に匹敵する性能を示している。
論文 参考訳(メタデータ) (2022-01-12T18:00:29Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
GRCCAと呼ばれるクラスタ割り当てを対比して、教師なしグラフ表現モデルを提案する。
クラスタリングアルゴリズムとコントラスト学習を組み合わせることで、局所的およびグローバルな情報を合成的にうまく活用する動機付けがある。
GRCCAは、ほとんどのタスクにおいて強力な競争力を持っている。
論文 参考訳(メタデータ) (2021-12-15T07:28:58Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
マルチビュークラスタリングのための効率的かつ効率的なグラフ学習モデルを提案する。
本手法はテンソルシャッテンp-ノルムの最小化により異なるビューのグラフ間のビュー類似性を利用する。
提案アルゴリズムは時間経済であり,安定した結果を得るとともに,データサイズによく対応している。
論文 参考訳(メタデータ) (2021-08-15T13:14:28Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
データの局所構造とグローバル構造の両方を保存するためのグラフ学習フレームワークを提案する。
本手法は, サンプルの自己表現性を利用して, 局所構造を尊重するために, 大域的構造と適応的隣接アプローチを捉える。
我々のモデルは、ある条件下でのカーネルk平均法とk平均法の組合せと等価である。
論文 参考訳(メタデータ) (2020-08-31T08:41:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。